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Abstract

Inexpensive personal robots will soon become available to a large portion
of the population. Currently, most consumer robots are simple single-purpose
machines or toys. In order to be widely accepted, robots need to accomplish
a wide range of tasks in diverse conditions. Learning these tasks from demon-
strations offers a convenient mechanism to customize and train a robot by
transferring task related knowledge from a person to a robot. This avoids
the time-consuming and complex process of manual programming. The way
in which a person interacts with a robot during a demonstration plays a vital
role in terms of how effectively and accurately a person is able to provide
the demonstration. Teaching through demonstrations is a social activity, one
that requires bi-directional communication between a teacher and a student.
This work studies how visual observation of a robot and audio cues affect
a persons ability to teach in a social setting. Results show that audio cues
provided important knowledge about a robot’s internal state, while visual
observation of a robot can hinder an instructor due to development incorrect
mental models of the robot.
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1. Introduction

Technological advancement is a never ending force, which will soon pro-
vide the public at large with personal robots capable of fulfilling a wide
variety of tasks. This can been seen with advances in toys, such as the re-
cently discontinued Sony Aibo, Woowee’s Robosapian, and numerous robot
kits, and consumer and research robots, such as the Nao from Aldebaran
Robotics [1], PR2 from Willow Garage [2], and Sarcos humanoid [3].

As hardware makes steady strides forward, so must algorithms and soft-
ware. Research generally leads implementation by roughly twenty years, and
at the forefront of robotic research exists and array of learning and adapta-
tion algorithms designed to make it possible for robots to achieve complex
tasks in real-world scenarios.

Learning algorithms are not the only means to achieve robot program-
ming. Alternative methods rely on manual generation of state machines, or
other forms of control logic. This approach is very useful in many situations
where the domain is simple or well known. However complex tasks are diffi-
cult to handle manually, especially if the domain has unknown variables. In
these situations, it may be more efficient to utilize a form of machine learning
to generate a control policy. Some algorithms are unsupervised and require
no human input, while others take advantage of a human’s knowledge by
incorporating their input into the learning process.

The application of learning algorithms currently still requires significant
experience on the part of the developer. As commercially available multi-
purpose robot become available, there will be a need to customize their pro-
gramming to fit different and unique situations. If specialized skills are re-
quired to program a robot, their adoption into society will be stunted.

Programming a robot can be thought of as transferring knowledge from
a person to a machine. One of the first methods for improved knowledge
transfer relied on a computer scientist to encode knowledge directly from a
subject matter expert, such as a doctor, into a computer friendly format. The
most common technique required the computer scientist to interview one or
more experts and codify their answers into a knowledge base. This process
is called knowledge engineering, and the result was a knowledge base that
could be used by a software program, or expert system, to answer queries and
resolve problems [4]. While the expert systems could respond consistently
and accurately, the form of knowledge transfer was clumsy, prone to error,
and in many situations the subject matter expert could not explain the logic
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behind their reasoning.
While expert systems can be applied to robotics [5, 6], they are not easily

adaptable and are encumbered by a middle man that acts as an interpreter.
Imitation learning is an alternative approach that utilizes only observations
of someone or something performing a task or action to derive a control
policy [7]. A robot can use this technique without the knowledge of the
observed. One major stumbling block is mapping movements from the ob-
served to the observed. If both parties share common physical attributes,
then there are fewer problems. However a robot typically does not have the
same characteristics as a human, and the process is therefore much more
challenging.

Inspiration for imitation learning as applied to robotics comes from in-
sights into how humans and primates learn. Our bodies are well adapted to
watching and mimicking others. We can do this without much thought and
concentration. Giacomo Rizzolatti has shown that our brains have special
neurons, called mirror neurons, that allow us to see, process, and copy ac-
tions of other people [8]. The mirror neuron has even inspired roboticists to
devise approaches to robot learning based on our physiology [9, 10].

It has also been argued that imitation can help bootstrap social cognition,
in much the same way that babies imitate and learn from adults [11]. Even
our ability to empathize has been tied to the mirror neuron [12]. Imbuing
our natural ability to learn from imitation into a robot is still well beyond
the reach of current technology. So, rather than attempting to mimic our
mirror neurons, we take an approach that plays to the strengths of both man
and machine.

Learning from demonstration (LfD) relies on a human teacher to actively
guide a robot student through a task. Imitation learning and LfD are com-
monly used interchangeably, however there is a difference. LfD utilizes a
deliberate and active teacher that provides task demonstration to a robot,
while imitation learning relies on remote observations of a person who may
not conscientiously be a teacher. LfD is a social activity that relies on com-
munication between both the instructor and the student. The instructor
should understand what is going on in the mind of the student, and the stu-
dent conveys this information through verbal and non-verbal communication.
Without this flow of information an instructor can only lecture, and while
this method of teaching is commonly used in a classroom it’s not an effective
approach for teaching tasks.

Throughout our lives we both give and receive demonstrations. Parents
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provide their children with numerous demonstrations, such as how to swing a
bat, ride a bike, and tie a neck-tie. Since this practice is so common, we can
safely assume that a majority of people are capable of demonstrating tasks
to another person or even a robot. The hurdle a robot must overcome is the
ability to act in a social setting, and relay information back to the teacher
in a meaningful manner. Through the use of LfD, the complexity associated
with programming a robot has been reduced. A much larger section of the
population can then theoretically “program” a robot, assuming a robot is a
capable student.

Our ability to act as a student and express our internal state and un-
derstanding to an instructor comes just as naturally as our ability to act as
the instructor. This is not true for a robot, which has not had the luxury
of years of growing in a social setting with a complex brain and develop-
ing an appropriate theory of mind [13, 14]. Brian Scassellati has developed
a framework that begins to apply the theory of mind to robots, through
face detection, gaze tracking, and discriminating animate from inanimate
objects [15]. These advances show that, while limited, a robot can begin to
act in a social setting.

Through the use of creative hardware and software, a robot can even be-
gin to mimic face and body expressions that humans naturally exhibit [16].
Other robots lack some of the expressive capabilities and instead focus more
on utilitarian purposes [17]. With either type, it’s possible to provide feed-
back using some communication medium, such as audio, gestures, facial ex-
pressions, graphical interfaces, or even simple actions designed to convey
intentions [18]. Picking a method of communication is sufficient only if it is
easily and correctly interpreted by a human.

In this work we use the Willow Garage PR2 [2] as the robot student. The
PR2 has a humanoid torso with stereo cameras and laser range finders on a
mobile base. Since it does not have an expressive face, we rely upon audio
communication and a graphical interface that can display text messages. In
order to avoid gender issues and limit the robot’s portrayal of unrealistic
intelligence, we use only non-verbal audio signals. Changes in pitch, tone,
and frequency allow us to create audio cues that can indicate concepts such
as success (rise in pitch, such as uttering “whoohoo”), failure (drop in pitch,
such as “uhh-ohh”), and acknowledgment (such as “okay”).

The PR2 is capable of detecting and manipulating simple objects with
two arms and navigating in cluttered indoor environments. These attributes
make it the ideal platform for executing table-top manipulation tasks, such
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as object sorting and playing simple games. Both of these styles of tasks
were used in this work in the form of sorting colored blocks into bins and a
three-disk version of the Towers of Hanoi puzzle.

Environmental factors are often overlooked when teaching takes place.
With high-speed Internet connections and streaming video, it’s very possi-
ble to teach remotely. The instructor may not be able to see the student
completely or at all. This makes it much more difficult on the part of the in-
structor to interpret the state of the robot student, and also more challenging
for the student to communicate back to the teacher.

In this work we specifically look at what affect visual obstruction of a
robot student has on an instructor when they are giving a demonstration.
Performance of the instructor can be measured using the time it takes to
complete a demonstration, an instructors level of frustration and effort, and
the number of commands they issue to the robot. Using the Towers of Hanoi
puzzle as an engaging task domain, some instructors were placed behind a
curtain while some had direct visual access. Both sets of instructors used
a graphical interface to teach the robot, which displayed a live video feed
from the robot’s point of view. Without audio cues, the results indicate that
instructors provided with direct visual access had the tendency to generate
improper mental models of the robot’s state.

This shows that even though the PR2 is clearly not a human and does
not behave as one, we still build an internal model of the robot’s state. It is
therefore vital that a robot communicate its state effectively, so that people
interpret the state of the robot properly. In a follow-up study, we allowed
the robot to emit audio cues as an additional communication mechanism to
the graphical interface. These cues allowed the instructors to identify when
the PR2 understood a command and if it was successful at completing it.
This little bit of information allowed instructors to significantly improve their
performance.

Once people start taking an active role in the learning process of robots,
it’s important to understand how to best achieve human-robot interaction.
As a population we are relatively new to the idea of interacting with robots.
While people are very adaptable, it’s not realistic to force people to change
habits to meet a robot’s needs and limitations. Roboticists should instead
incorporate social skills into a robot, allowing for natural interactions.

The rest of this paper is structured as follows. Section 2 introduces learn-
ing from demonstration, the role of the student and teacher, and. Section 4
briefly discusses the internal representation of tasks that the robot uses.
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Section 3 touches upon how humans and robot can communicate, and the
reasons for choosing a graphical interface. Sections 5 and 6 presents the
studies involving the Towers of Hanoi puzzle and block sorting. Section 10
summaries this work and discusses the direction of future work.

2. Learning from Demonstration

Learning from demonstration is a general classification for a technique
that encompasses a situation in which someone, or something, acts as an
instructor that guides another entity, acting as a student, through a task.
The expectation is that the student will learn how to accomplish the task
following one or more demonstrations. A task can be anything from picking
up an object to swinging a tennis racket. In most situations the term LfD is
used when the instructor is a person and the student is a robot. This is the
definition that is used for the rest of this paper.

The type of task that can be taught to a robot is limited primarily by its
physical properties. Often LfD is applied to learning joint trajectories, such
as how to reach and move an arm [19, 20]. However, high-level tasks such
as how to bake a cake [21], or perform complex pick-and-place actions in a
cluttered environment [22] can be taught as well. Generally LfD is useful
when a control policy is difficult to define, or an expert (other than the
system designer) is needed.

One of the primary components in the process of learning by demonstra-
tion is the interface through which a teacher communicates with the robot.
Many different mechanisms have been used, including joysticks [23, 24], ob-
servation of the teacher by the robot [25], manual manipulation of the robot’s
physical structure [26], and graphical interfaces [27]. For this work, we have
chosen to utilize a graphical interface to facilitate the transfer of knowledge
from teacher to student.

A graphical interface provides a rich and customizable medium. Observa-
tion based interaction relies on the robot sensing and interpreting a human
which is often difficult, subject to noise and a variety of environmental fac-
tors. Joystick control and manual manipulation requires the instructor to
be trained about the robot’s kinematic structure. Due the ubiquity of per-
sonal computers in our daily lives, most people are familiar with graphical
interfaces. This helps reduce the learning curve for the instructor using a
graphical interface and improves their comfort level when interacting with
the robot.
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Once one or more demonstrations have been provided, it’s assumed the
robot will learn a corresponding control policy. The learning algorithm used
by the robot is chosen by the system designer. A common approach is to
use reinforcement learning [28, 29]. Other methods utilize regression tech-
niques [30, 31]. The approach used in this work has the robot learn decision
networks [32], an extension to Bayesian networks, which incorporate the con-
cept of choosing what action to take based on the robot’s current state. In
order to constrain this discussion, we will save the details of decision networks
to a future article.

2.1. Role of the Student

As a student, the job of a robot is to observe itself and its environ-
ment during a demonstration. We assume that an instructor demonstrates a
task to the best of their ability without introducing malicious instructions.
Based on the information gathered, and all similar demonstrations, the robot
should construct or adapt a representation of the task that is suitable for au-
tonomous execution.

An instructor relies on information from the student to judge whether or
not the student understands what is being taught, and how to proceed with
the instructions. It is therefore a vital role of the student to accurately convey
state information in a timely manner for learning to proceed smoothly.

2.2. Role of the Instructor

In a human-human teaching scenario, an instructor acts as an expert on
a particular subject. It is no different when a person teaches a robot a task.
We assume the instructor is knowledgeable on the subject at hand, and is
capable of generating a demonstration in a non-malicious manner and as
error free as possible.

Providing a demonstration is not classroom lecturing where the instruc-
tor can speak freely to an audience with little to no feedback. Rather the
instructor relies on information from their student in order to guide the
demonstration. The instructor must therefore be able to interpret cues from
the student that offer insight into their understanding (or lack thereof) of
the subject matter.

In the context of teaching robots, it’s very possible that the instructor
does not understand the robot’s physical and expressive capabilities. It is
unrealistic to assume the instructor will have sufficient time and expertise
to learn about the robot prior to giving demonstrations. Instead the burden
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is placed on the robot. It must express itself in a manner that is easily
understood by the general public. Through this approach, instructors can
behave more naturally and provide better demonstrations to the robot.

3. Human Robot Communication

The ability to communicate efficiently and naturally is a requirement for
any teaching scenario. For most situations it is assumed that both parties
share a common communication medium. However once a robot is introduced
this assumption is no longer valid. With little day-to-day robot interaction,
most people have ill defined notions of how to interact with a robot. Further-
more, any information provided to a person about a robot prior to interaction
will skew their beliefs about the robot’s capabilities [33].

Given that an instructor most likely has little or no knowledge about how
a robot communicates, the robot should communicate through a medium
that is natural and easily understood by the instructor. By following this
guideline, the instructor can act more comfortably and ideally provided bet-
ter demonstrations. Both input to the robot and output from the robot
should be expressive enough to capture relevant information efficiently and
intuitively for an instructor to use with minimal to no prior training.

We will first tackle the problem of robot input. During a demonstration,
the primary job of the instructor is to pass information to the robot. Numer-
ous options are available to the robot including speech recognition, visual
observation, joysticks, direct manipulation, and a graphical interface. There
are pros and cons of each option. Speech recognition and visual observation
place the least burden on the instructor, but are very difficult to implement
robustly. Joysticks are common tools for many people, however it’s diffi-
cult to control a robot with many degrees of freedom via a joystick. Direct
manipulation essentially removes the joystick by allowing an instructor to
manually move the robot during a demonstration. This hands-on approach
is time-consuming, and relies on the instructor having intimate knowledge of
the kinematic and dynamic capabilities of the robot.

The approach used in this work utilizes a graphical interface as the pri-
mary medium through which information is sent to and from the robot. A
graphical interface allows for data abstraction, such as visualization of laser
scans, thereby removing unnecessary details. The proliferation of GUI’s in
our everyday lives, from desktop PCs to mobile phones, allows them to be
almost universally accepted. Finally, a well designed GUI can be used by
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Figure 1: Histograms of the sound survey. Each horizontal bar is the frequency at which
the expression was selected for the graph’s audio cue. Graph A is the audio cue chosen to
represent success, graph B for acknowledgment, and graph C for error.

many different robots, without any significant changes. Just as web browsers
can render many different web pages, its realistic to assume that a GUI could
interact with many different robots.

3.1. Audio Cues

Robots can also make use of natural communication methods in addition
to graphical interfaces. Audio cues are one medium that is readily accessible
to robots, and easy for a person to understand if properly designed.

Utilizing the speakers on a robot to emit sounds is trivial, the important
aspect is choosing sounds that are meaningful and understandable to the
general population. Sounds that may cause confusion or misunderstanding
will only hinder the learning process, and degrade the demonstrations pro-
vided by a teacher. We have therefore endeavored to validate sounds that a
robot could use through surveys in an attempt to limit any ambiguities.
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We placed an additional constraint of using non-verbal communication on
the robot. This decision allows the robot to remain gender neutral, prevent it
from giving off a persona of intelligence beyond its capabilities, and eliminates
language barriers. Non-verbal cues are also easier to hear as they are typically
based upon pitch, volume, and frequency differences rather than spoken word.

Working with sound designers from Pixar Animation Studios, we devel-
oped a set of ten non-verbal audio cues. In order to create a valid mapping
from sound to meaning, we designed an online survey. A participant com-
pleting this study listened to the sounds in random order. For each sound,
they are asked what expression best matches the sound. The list of expres-
sions included success, error, acknowledgment, confusion, and thinking. The
participants are informed that the sounds are used by a robot, and a picture
of a robot is accompanied with the sound. Following the survey we gathered
demographic data, including age, gender, robotics experience, and whether
they are a native English speaker.

This study was posted on Mechanical Turk, and we gathered information
from 100 people. The results indicate that some sounds are less ambiguous
than others. This has helped guide our choice of sounds for the robot, with
the goal of reducing misinterpretation by a teacher.

The three best sounds, one for each of success, error, and acknowledgment,
were chosen from the results. Figure ?? shows the frequency of selecting an
expression for three best sounds. The error and success sounds had the
greatest separation. Acknowledgment was more ambiguous, however, when
used in practice every participant understood its meaning. This most likely
stems from more contextual information.

4. Task Representation

The representation used by the robot to internally store knowledge about
a task is a key component in a learning machine. This is particularly im-
portant when the robot must contend with the possibility of storing and
referencing large numbers of tasks. The representation used must therefore
be light weight in terms of its memory footprint, easily accessible, and adapt-
able. We have placed additional constraints that will allow the robot to share
knowledge among other heterogeneous robots, and allow for online learning
through demonstrations.

Based on these requirements, relatively few options remained viable can-
didates. Most supervised learning algorithms work well for small state spaces,
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or fail when a large amount of noise is present in the data. Reinforcement
learning does not scale well to large state spaces, and requires significant
number of training cycles. Gaussian processes and other regression methods
require a significant amount of data which precludes teaching from demon-
stration. Decision trees suffer from exponential branching based on the num-
ber of variables modeled.

As a result we have settled on decision networks, also known as influence
diagrams. A decision network is a generalization of Bayesian networks. They
include the standard structure from Bayesian networks, as well as decision
nodes and values nodes. A decision node defines a set of actions that are
available for execution, and structurally they enforce a time ordering in the
network. Value nodes define a utility function that is associated with a
single decision node. This utility function determines which actions are most
appropriate for execution by following a maximum expected utility criterion.
A network can be graphically represented using unique shapes for each node
type and edges that encode conditional independence.

This article’s focus is on the process of teaching and communication be-
tween a human and robot. Details associated the decision networks, and how
they are generated and used is left to future work.

5. Towers of Hanoi

In this experiment, we examine the effects of visual obstruction during
human robot interaction. Based on prior work, we believed that direct visual
access to a robot will improve a persons ability to understand and estimate
a robot’s state. By having a more complete understanding of a robot’s state,
an instructor will ideally provide better demonstrations.

We have chosen the Towers of Hanoi puzzle as the task to be learned by
the robot. Towers of of Hanoi is a classic puzzle that consists of three poles
and N disks of decreasing size. The starting state for the puzzle has all the
disks on the left-most pole, and the goal is to move all the disks to the right
pole. Two rules must be followed, the first states that only one disk may be
moved at a time, and the second is a larger disk may not be placed on top a
smaller disk.

This toy problem was selected for several reasons. For the human, the
puzzle is sufficiently challenging to engage a person, without being frustrat-
ingly complex (given a small N). For the robot, it is a reasonably solvable
task that is used in artificial intelligence courses because it involves a closed
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and highly constrained problem space. For the purposes of evaluating the
human-robot interaction, the puzzle is also well suited for evaluation of a
teacher’s performance because there is an optimal solution, allowing for an
objective comparison between teachers’ performances.

The results of this study suggest directions for future work into human-
robot interaction. We are specifically interested the optimal conditions in
which to conduct learning by demonstration sessions, and what environmen-
tal factors may affect a teacher’s actual and perceived performance.

5.1. Background

To our knowledge, this is the first study to look at the effect of visual
obstructions when interacting with a robot. Prior research in human-human
interaction may lend some insight into how people will respond with a robot.
Most work related to interacting between two or more humans when obstacles
are present look at face-to-face communication versus mediated communica-
tion. These studies examine the effects of visibility [34, 35] upon human
communication and coordination.

Sociological literature has shown that face-to-face contact improves trust
among humans and increases cooperation [36]. Even voice communication
shows marked improvement over text based alternatives [37].

With voice and face-to-face communication, people are better able to
evaluate each others state and attitude. While a robot does not have the
same depth of communication as a person, we expect that the visibility of a
humanoid robot will benefit a person’s ability to understand the state of the
robot.

It is quite possible that people in this study will extrapolate their own
internal models to fit the characteristics of a robot. Work has shown that
people are adept at creating accurate mental models of humanoid robots [38,
39]. These models were used to by people to determine the competencies of
the robots, based on weak hypotheses. Teachers with an unobstructed view
of the robot may be more likely to build an internal model of the robot.
This could help the teacher choose when and which to send commands to
the robot.

5.2. Towers of Hanoi GUI

The graphical interface developed for the teaching a robot the Towers of
Hanoi puzzle consists of five web-based widgets as seen in Figure 5b. Each
widget is self-contained entity with clear borders and a descriptive title. The
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amount of text and buttons has been kept to a minimum in order to reduce
confusion.

Starting with top right widget and moving clockwise, the GUI contains
an Action Selector widget that allows a teacher to control the robot. Inside
this widget are two text lists. The list on the left, labeled Actions, contains
all the available actions. These actions are movements that the robot can
perform without any additional guidance from the teacher. To the right
of this list is the Objects list. The elements in the list are all the entities
in the environment that the robot can detect and interact with. Again,
object recognition software has been provided to the robot without additional
instruction from the teacher.

For this study, the available actions included Move-to, Pick-up, and Put-
down. The choice of labels for these actions are design to be self-explanatory.
For example. the Move-to action will move the robot’s gripper to an object,
and the Pick-up action will cause the robot to grasp and lift an object. The
detectable objects include all the discs (Red, Green and Blue) and the poles
(Left, Middle, and Right) on the game board.

By using the available actions and objects, the teacher can construct a
command that the robot can easily understand. For example, by selecting
Move-to and Red Disk and selecting the Execute button, the robot will move
to the red disk. These verb-noun pairs serve to help the teacher understand
the capabilities of the robot by phrasing the robot’s capabilities in human-
readable form.

Below the Action Selector widget is the Robot Status widget. Inside this
widget are displayed status messages from the robot. This includes messages
pertaining to the progress the robot is making toward completing a given
command, and error messages. The position of this widget was carefully
chosen to lie closest to the Action Selector widget. The purpose behind this
decision was to promote the two-way communication that occurs via the GUI,
and encourage the teachers to use the status messages during the teaching
process.

The next widget is titled Task Complete, and contains a single button.
This widget exists to provide a mechanism that indicates when a demonstra-
tion is complete.

Moving clockwise, the Instructions widget displays a concise list of in-
structions for the teacher. While not entirely necessary, providing some
measure of help on the GUI prevents the teacher from looking elsewhere for
technical help. Again, this was designed to ensure that the teacher stayed
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focused on the demonstration task.
The final widget located in the upper left is the Camera View. The image

displayed in this widget is a video stream from robot’s camera. This widget’s
primary purpose is to provide the teacher with context about what the robot
can observe.

5.3. System Interaction

A complete system includes a teacher, a GUI displayed on a computing
device, and a robot. The teacher sends commands to the robot and receives
feedback from the robot through the GUI.

The teacher starts by selecting the desired action to perform and an object
on which to perform the action. For instance, if the robot should pickup a red
disk the action would be Pick-up and the object Red Disk. This is assuming
the robot has a Pick-up action and an object detector for red disks.

Once a command is received by the robot, its job is to perform the action.
During execution, the robot should relay useful sensor and state information
back to the GUI for display. The details of how the robot actually accom-
plishes the action and performs object detection is left to the system designer.

This process of sending commands and observing the results is continued
by the teacher until they feel the demonstration is complete. During the
demonstration, the robot records all the commands and sensor data. Using
this information the robot will learn a policy that matches the demonstration.
The actual learning process is left to future work.

5.4. Experimental Design

In a 2-level (robot visibility: directly visible vs. visually occluded) between-
participants experiment design, this controlled experiment investigated the
influences of robot visibility upon human-robot interaction, specifically how
human teachers would perform when demonstrating to a robot how to com-
plete the Towers of Hanoi puzzle.

5.4.1. Hypothesis

Given our previous statement that it will be easier for a teacher to develop
a mental model of the robot, given line-of-sight access, we hypothesize that
such a model will be beneficial to the teacher. An intuitive understanding
of the robot’s state should help the teacher internally formalize a proper
teaching and interaction strategy, and make them more comfortable using
the robot.
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5.4.2. Participants

Twenty volunteers participated in this study, with ages ranging from 22
to 59. Of the twenty instructors, six were female, and the remainder male.
The six females were evenly distributed between the visible and non-visible
teaching conditions.

5.4.3. Manipulation

Each participant was randomly assigned to one of two experimental con-
ditions. Half the participants were allowed direct observation of the robot
while conducting a demonstration. These participants are called the visible
instructors. Other participants could not see the robot due to a screen be-
hind which they were placed. These instructors could only rely on the GUI
for feedback from the robot, and were termed non-visible instructors.

5.4.4. Materials

Our version of the Towers of Hanoi puzzle consists of three disks colored
red, green, and blue with the red disk being the largest and blue the smallest.
With only three disks this puzzle is the simplest form of Towers of Hanoi.
The purpose of this study was not to test a teachers’ performance at solving
the puzzle, but rather their ability to use the GUI to instruct the robot.

The robot used in these studies is the PR2 mobile manipulator designed
by Willow Garage.This robot consists of a wheeled base with two 7 DOF
arms, and a pan-tilt head that carries two stereo camera pairs. The PR2 is
capable of navigating around typical office environments, and detecting and
interacting with simple objects.

Data from the stereo head on the PR2 was used to detect the the location
of the disks and the poles. A color blob tracker working in conjunction with
the stereo data identified the location of the discs. The poles were identified
based on their height using the point cloud data from the stereo head.

Communication from the instructor to robot utilizes a handheld mobile
device. With the proliferation of smart phones, mp3 players, and other vari-
ous gadgets we have made the assumption that most people would be famil-
iar, if not comfortable, using a handheld device. The Nokia N810 Internet
tabletwas chosen based on its high-speed wireless, web-browsing capabilities,
touch screen, and open-source operating system.
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5.4.5. Procedure

Each participant in this study was given a short written instruction sheet
that described the Towers of Hanoi puzzle, the robot, and the GUI. Before
starting the demonstration the participant completed a set of general survey
questions aimed at assessing the individuals computer experience and current
level of frustration [40].

5.4.6. Measures

The set of measurements gathered included the duration of a demonstra-
tion, number of valid commands sent to the robot, and the total number of
commands. Demonstration duration was measured from the time the first
command was issued to the time the teacher selected the Finished button on
the GUI. The number of valid commands is a count of all the commands that
caused the robot to execute a valid action. The total number of commands
is the tally of all commands sent to the robot by the teacher. It is possible to
send many extraneous commands to the robot while its in the middle of exe-
cuting a command. These extra commands cannot be handled by the robot,
and are a useful measure to the degree of frustration felt by the teacher, and
how well the teacher understands the state of the robot.

Also recorded were demographic information including age, gender, edu-
cation, and employment. We also collected data concerning computer usage
and experience, and willingness to solve computer issues. This information
was collected prior to completing the Towers of Hanoi puzzle.

Following the completion of a demonstration, the participants were asked
about their perceived mental demand, physical demand, temporal demand,
performance, effort, and frustration. These statistics were drawn from the
NASA Task Load Index as a measure of cognitive load [41].

5.4.7. Data Analysis

All quantitative measures were analyzed using analysis of variance (ANOVA)
with the experiment manipulation of robot visibility as the primary indepen-
dent variable.

One participant’s data for number of commands was an outlier (more
than two standard deviations above the mean value for the condition) so his
data were replaced with his group’s average value.
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5.5. Experiment Results

5.5.1. Number of commands

The number of commands sent to the robot varies depending on the
teacher’s ability to solve the puzzle efficiently and their understanding of the
state of the robot. Figure 7b is a box plot that shows statistics related to the
number of commands sent to the robot by the teacher. On the left side of the
box plot is the total number of commands sent split between separated and
collocated teachers. On the right of this figure is the total number commands.

Teachers who could see the robot sent more valid commands to the robot
(M=47.1, SD=12.3) than teachers who could not see the robot (M=36.8,
SD=7.7), F(1,18)=6.12, p< .03.

Teachers who could see the robot sent more commands (in total) to the
robot, (M=36.7, SD=7.7) than teachers who could not see the robot(M=29.9,
SD=4.0), F(1,18)=5.04, p< .04.

The total number of commands indicates that teachers who could see
the robot may get more frustrated with the robot and/or have an incorrect
mental model of the robot than people who could not see the robot.

5.5.2. Time on task

Based on our original hypothesis, we expected those teachers who were
behind the screen to require more time to complete the Towers of Hanoi
demonstration. The results of this study do not support this hypothesis. As
seen in Figures 7a and 7b both the time to complete the task and the number
of commands issued by the teachers actually increased when the teacher had
full view of the robot.

Task duration measured the amount of time it took a teacher to complete
the Towers of Hanoi puzzle. Figure 7a shows the comparison of visible versus
non-visible teachers. The mean duration is longer for visible teachers, however
there is also more variance in that condition. Alternatively, those teachers
who were visually blocked from the robot performed more consistently, and
were able to complete the task in a slightly shorter timespan. The significance
of location as an indicator of duration is not significant, F(1,18)=2.58, p=.13;
however these data do suggest a trend.

6. Robot Kitting

The Towers of Hanoi study indicated that direct observation of a robot
does not provide sufficient information to an instructor. The PR2’s form has
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Figure 2: Box plots of the duration times and command counts between collocated and
separated teachers.

humanoid aspects, but since it does not behave like a human the instructor is
unable to properly infer the robot’s state. A more distinct and clear form of
communication is required to help alleviate this ambiguity. We hypothesize
that audio cues may serve as the needed form of communication.

In order to convey information through sound, a robot requires only a
speaker and enough logic to map internal state to a sound. We have initially
opted to use non-verbal sounds, in order to prevent gender identification,
language difficulties, and most importantly to limit the amount of intelligence
the robot projects.

Based on a previous study, see Section 3.1, we chose three sounds to cover
acknowledgment, error, and success. These three categories were chosen due
their general nature, and partly because they fit well within the context
of learning from demonstrations. As the instructor gives commands to the
robot, it’s easy to convey acknowledgment of a command, an error if one
occurs, and success when the command is complete.

The effect audio cues have on instructor performance was measured in
a study based on a manufacturing process call kitting. When assembling
complex objects, such as a robot, it is useful to hierarchically decompose the
object into simple subcomponents stopping at raw materials (such as nuts
and bolts). Each subcomponent is paired with a sheet that lists all the parts
necessary for its construction. This sheet is called a kit sheet, and the parts
required to build the subcomponent are gathered into a bin called a kit. The
process of collecting parts into a kit is called kitting.
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Since the goal of this study was not to assemble an actual kit, usually
consisting of small parts that a robot would find difficult to grasp, we used
colored boxes as substitutes for the parts. The study was also conducted
in simulation, providing a consistent environment in which to teach that
mimics the real world. The interactions between the human and robot were
of primary concern. The task of kitting acts just as a means to engage a
person with a meaningful and realistic task.

Instructors used the graphical interface that was developed for the Towers
of Hanoi study, see section 5.2. The only difference between the two interfaces
are the labeled objects, which now consist of a set of six colored boxes instead
of three colored disks.

6.1. Experimental Design

In a 2x2 controlled study (audio cues: enabled vs. disabled, robot visi-
bility: directly visible vs. no visualization), audio cues were varied between
subjects and visibility varied within subjects. The goal is to investigate the
effects audio cues and visibility have on interaction in a teaching context.
Performance measures include time on task, number of commands issued by
the instructor, and the number of errors that occur. It should be noted that
simulated robot is able to perform each command perfectly. As a result, any
error is due to an improper command sent by the instructor.

6.1.1. Hypothesis

Since communication plays a vital role in human-human interactions, it
is safe to assume that it will also play a significant role in human-robot
interactions. With the robot’s ability to express state through audio cues,
the instructor should have a more informed understanding of the robot. The
result, we predict, is a reduction in the number of erroneous commands issued
by the instructor, and a reduction in the time on task.

6.1.2. Participants

Twenty volunteers participated in this study, with ages ranging from 22
to 60. Of the twenty instructors, ten were male and ten were female. The
men and women were evenly distributed among the test conditions, and the
order in which the test conditions were run was randomized.
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6.1.3. Manipulation

Each participant completed two demonstrations, each with a different
kit sheet, one in which they could not see the robot and one in which they
could. The order of the kit sheet and robot visibility were varied between
subjects. Half of the participants received audio cues from the robot, while
the other half did not. This resulted in four test cases based on the two
conditions: visibility, and sound. Test cases were randomly assigned and
evenly distributed among men and women.

6.1.4. Materials

The kitting task was completely simulated in Gazebo [42], an open-source
3D robot simulator. Physical interactions, lighting conditions, and materials
are all simulated within Gazebo. The result is a well defined and immersive
environment in which a simulated robot can operate.

A simulated version of the PR2 robot was used in this study. Six colored
blocks (red, green, blue, yellow, purple, turquoise), sat in a row on a table in
front of the robot. To either side of the PR2 were two bins, labeled A and
B. The blocks and bins were well within the reach of the PR2’s arms, which
made movement of the base unnecessary. Participants therefore were only
allowed to controlled arm and gripper movements.

The graphical interface, used to communicate with the robot, ran in a
web browser on the desktop computer along side Gazebo. Changes between
this graphical interface and that used in the Towers of Hanoi study included
only different objects with which the robot could interact. A mouse was the
only physical device required to used the interface.

6.1.5. Procedure

A short instruction sheet was provided to each participant that described
the process of kitting, their role as instructor, and how to use the graphical
interface. Once they read through the instructions, the participant was given
a kit sheet and asked to complete a demonstration. Following the demonstra-
tion, the participant completed a short questionnaire designed to assess their
level of frustration. A second kit sheet with different bin assignments for the
colored blocks was then completed by the participant followed by the same
questionnaire and a general survey that gathered demographic information.
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(a) (b)

Figure 3: Interaction plots of sounds and robot visibility on (a) the number of bad com-
mands, and (b) the total number of commands

6.1.6. Measures and Data Analysis

The set of measures collected matched those from the Towers of Hanoi
study, see Section 5.4.6. Two sets of measurements for cognitive load were
gathered, one after each demonstration.

Similarly, analysis of the data followed the procedure used in the Tower
of Hanoi study, see Section 5.4.7. Three participant’s data for the number of
command and number of bad commands exceeded two standard deviations
above the mean. These values were replaced with the group’s mean.

6.2. Experiment Results

6.2.1. Number of Bad Commands

The number of bad command was marginally predicted by the presence
of auditory feedback from the robot. People who heard auditory feedback
gave fewer bad commands to the robot (M=1.9, SD=1.5) than people who
did not have any auditory feedback (M=3.3, SD=2.3), F(1,40)=4.01, p=.056.
While this effect would be significant if we chose a significance cut-off value
of p=.10, it is only approaching significance because we had originally chosen
out significance cut-off level to be p=.05.

Figure ?? depicts the interaction sound and visibility has on the number
of bad commands. When sounds are enabled, bad commands reduce in both
cases. When the robot is not directly visible, the number of bad commands
are also slightly reduced.
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6.2.2. Total Number of Commands

The total number of commands issued to the robot was influenced by
visual access to the robot. When people had visual access to the robot,
they gave slightly more commands to the robot in total (M=27.1, SD=2.1)
than when they did not have visual access to the robot (M=26.4, SD=2.2),
F(1,40)=3.99, p=.01. This effect is significant at the p=.05 level.

Figure ?? shows the interaction sound and visibility has on the total
number of commands. Audio cues decrease the total number of commands
in both cases, with a slightly more dramatic effect when the robot is visible.

6.2.3. Time on Task

Neither auditory nor visual feedback from the robot was found to be a
significant predictor of time on task so we ran a regression analysis of robot
experience as a predictor of time on task. The most significant predictor of
the time that a person spent on the task was the amount of experience that
s/he had with robots. The more experience that the person had with robots,
the less time s/he spent on the task, beta=-6.30, p¡.01.

6.2.4. Perceptions

After completing each demonstration, the instructor was asked to com-
plete a survey designed to measure cognitive load. Data from this survey
indicates that instructors who received auditory feedback from the robot
user interface perceived that they exerted less effort on the task (M=2.1,
SD=1.5) than people who did not received auditory feedback from the robot
user interface (M=3.4, SD=2.1), F(1,34)=4.60, p¡.05.

Auditory feedback also impacted an instructor’s perceived physical ef-
fort. Instructors who received auditory feedback experienced more a slightly
greater physical demand during the task (M=1.7, SD=0.9) than people who
did not received auditory feedback from the robot user interface (M=1.1,
SD=0.3), F(1,34)=6.38, p¡.05. No significant differences were found for men-
tal or temporal demand.

7. Discussion

The major finding from these studies is the effect visibility of a robot has
on the performance of instructor. In both experimental setups, with a real
and simulated robot, the number of commands issued to the robot increased
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when a teacher was allowed visual access to the robot. The time on task also
tended to increase as well as the number of error commands.

An increase in the commands is interpreted to mean the instructors made
more mistakes. Redundant commands and commands that do not move the
robot closer to the desired goal are valid but undesirable. We can not expect
instructors to give perfect demonstrations, however we can strive to make
the teaching scenario more conducive to reaching that goal.

Observation of the instructor’s behavior revealed a few potential causes
for the differences in performance. Initial interaction with the robot caused
a certain amount of fascination, which distracted the instructor from the
demonstration. The robot’s arm movements while manipulating objects is
interesting to watch, much more so than the graphical interface. This is true
even for people who work with the PR2 robot on a daily basis. As a result,
visible teachers would decide when the robot was done performing an action
based on their own visual cues rather than direct information from the robot
via the GUI.

Teachers who were visually blocked from the robot did not have the abil-
ity to make direct visual judgments about the state of the robot. Instead,
these teachers relied on information provided to them from the graphical
interface and from audio cues. As a result, they issued fewer repeated com-
mands. In effect, visible teachers received information from the robot that
lacked context. As noted in prior work, just by increasing the amount of
information provided to a person does not necessarily increase their situa-
tional awareness [43]. It would be more efficient to improve the display and
throughput of information from the robot’s sensors to the human in order to
decrease confusion [44].

Other work has indicated that just by showing a person a humanoid robot,
they automatically start building a mental model of the robot [45, 46]. By
restricting some teachers from seeing the actual robot, they were limited in
their ability to generate improper mental models of the robot’s states.

Non-visible teachers also missed the “wow-factor” of the PR2 moving
its arms. While the graphical interface showed a live video stream from
the robot’s perspective, the field of view was small and the frame-rate was
low. This did not convey the same level of interest about the robot’s arm
movements.

Based on comments from the teachers, collected data, and observations
from the Towers of Hanoi study, it was clear that a human teacher needs more
useful feedback from the robot than just visual observations. This trend has

23



also been noted in [47], where teachers did not wait for the robot to complete
an action before providing more input.

Non-verbal audio cues were used to supplement the graphical interface
in a second study based on robot kitting. The choice of audio cues were
validated through an online survey of 100 people. During the course of the
kitting study, we received no indication the sounds were confusing.

Results show that sounds helped to improve the performance of instruc-
tors. The extra channel of communication provided instructors with vital
information about the internal state of the PR2. Comments from the in-
structors indicated that the audio cues properly informed them as to when
the robot was ready to accept an instruction, experienced an error, and re-
ceived a new instruction. Visibility of the robot still impacted instructor
performance, however the audio cues did temper this effect.

8. Limitations

These experiments had several limitations, including (1) the participant
sample of individuals, who were mostly engineers from the San Francisco Bay
Area, (2) the use of a single robot, PR2. Future work could address these
limitations by studying different sample populations and different robots,
thereby testing the generalizability of the results from the current studyies.

9. Future Work

While non-verbal audio cues showed some improvement on instructor
performance, they did not provide a complete solution. Other forms a com-
munication can be leveraged to help inform instructors about the state of the
robot. Gestures can be very expressive, and easily understood by people if
executed properly. While more difficult to implement, they could provided a
necessary form of communication between the robot student and instructor.

Both of the two studies discussed in this article have relied on a single
robot, the PR2. Its size, shape, and form may affect the how an instructor
perceives and interacts with the robot. Further work will utilize robots with
both similar and different properties in order to see what properties induce
the results discussed here.
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10. Conclusions

We have shown that interaction with a robot is affected by visual and
auditory signals. By allowing instructors direct visual access to the robot
student, the instructors tended to construct inaccurate mental models of the
robot’s state. This likely stems from a preference to map a human-like model
onto the capabilities of the robot. When this occurs expectations about the
robot’s performance and capabilities are altered to closely match what we
would expect of another person. Audio cues helped to improve instructor
performance by providing accurate information about the internal state of
robot through a natural medium of communication.

Instructors who were not allowed direct visual access of the robot did not
have the ability to build the same sort of internal representation of the robot.
In this situation, their only source of information came from data displayed
on a graphical interface and audio signals from the robot. The person did
not see the physical structure of the robot or some of the motions that it
executed.

While previous work has shown the benefits of constructing internal men-
tal models of a robot’s capabilities, this study demonstrates that there are
some expectations that a robot may not meet. These expectations can al-
ter the way in which we interact with the robot, and potentially a person’s
willingness to interact with the robot in the future.
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