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F a c e  a n d  G e s t u r e  R e c o g n i t i o n

Facial-Expression 
Analysis for Predicting 
Unsafe Driving Behavior

E very year in the US alone, more than 
42,000 Americans die as a result of 
6.8 million automobile accidents.1 
Consequently, driver-safety tech-
nology is an active research area in 

both industry and academia. Pervasive comput-
ing environments, with integrated sensors and 
networking, can provide an ideal platform for 
developing such technology. Taking effective 
countermeasures to enhance safe vehicle opera-
tion requires merging information from diverse 
sets of information.

As a first step, an active 
driver safety system (a system 
designed to prevent accidents) 
must monitor vehicle state and 
surroundings (see the “Re-
lated Work in Active Driver 
Safety Systems” sidebar). 
However, to fully transform 
the vehicle into a smart envi-

ronment,2 the driver must also be monitored. 
Human factors researchers have long studied 
the driver’s role in causing and preventing ac-
cidents and have found that the driver’s physi-
cal and emotional state, including fatigue3 and 
stress levels,4 play a role in a significant num-
ber of traffic accidents. Thus, many research-
ers have begun developing active driver-safety 
systems that monitor the driver as well as the  
vehicle.

We propose an active driver-safety frame-
work that captures both vehicle dynamics and 
the driver’s face. We then merge the two levels 
of data to produce an accident prediction and 
investigate the frameworks performance. Our 
study differs from previous work in active driver 
safety in four ways. First, we use a bottom-up 
approach, analyzing the movement of a com-
prehensive set of 22 raw facial features, rather 
than simple metafeatures such as eye gaze or 
head orientation. Second, we evaluate a range 
of time and frequency domain statistics to deter-
mine the most valuable statistics for driving ac-
cident prediction. Third, we predict major and 
minor accidents directly, not intermediate driver 
states such as fatigue. Finally, we explore the 
use of the face and car outputs at varying pre- 
accident intervals, uncovering important tempo-
ral trends in predictive accuracy for each feature  
subset.

Experimental Testbed
We recruited 49 undergraduate students 
to drive a 40-minute simulated course in a  
STiSIM driving simulator. We set up the simula-
tor, developed by Systems Technology,5 to run 
on a single PC and project the simulated im-
age of the roadway onto a white wall in the lab  
(see Figure 1).

During the driving course, we projected the 
sounds of the car, the road, and events happening  
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around the car into the simulator room 
via four PC speakers. The course sim-
ulated driving in a suburban environ-
ment with conditions varying from 
light to intense traffic. We included 
such challenging situations as busy in-
tersections, unsafe drivers, construc-
tion zones, sharp turns, and jaywalking 
pedestrians in an effort to increase the 
drive’s complexity (see Table 1).

We used a virtual driving simulator 
instead of real cars in order to safely 

collect a large sample size of accidents 
to use in our analyses. This let us gener-
ate separate models for major accidents 
(for example, hitting pedestrians, other 
vehicles, or off-road objects) and minor 
accidents (such as unwarranted lane 
changes, driving off the road, or run-
ning a stoplight).

During the experimental sessions, 
we recorded participants’ faces with 
two Logitech Web cameras at a rate of 
15 frames per second. We compressed 

the videos to AVI format in real time 
using DirectX and DivX technology. 
Although many technologies can cap-
ture facial movements, we opted for  
image-based capture because it does not 
require special markers or user inter-
vention. Thus, our system is less intru-
sive, increasing transparency. We also 
recorded the simulator’s output during 
the driving sessions, which was a text-
based log file listing road conditions, 
steering wheel angle, lane tracking  

M uch work has been done in the area of holistic vehicle 

sensing for active driver safety, including systems 

for monitoring the vehicle environment, vehicle state, and 

more recently, driver state. Systems developed to monitor 

the vehicle environment include pedestrian and obstacle 

detectors, lane-guidance systems, rear-bumper proximity 

sensors, blind-spot car detectors, automatic windshield wip-

ers, and surround imaging systems for parking assistance.1–6 

Systems for monitoring the vehicle state include tracking ve-

hicle location via GPS and accelerometers and other sensors 

to monitor driving speed, steering wheel angle, braking, and 

acceleration.7–8 Systems for monitoring driver state include 

frameworks that gauge driver fatigue, drowsiness, or stress 

levels.9–14

In this article, we extend previous work by using computer  

vision algorithms to directly map specific facial features to unsafe 

driving behavior. We use a comprehensive set of raw facial- 

feature points that are absent in previous work, including points 

around the nose. Furthermore, we don’t infer any specific mental 

states such as fatigue, but rather implement a more empirical 

approach that uses machine learning algorithms to find and use 

the facial features that are most correlated with accidents. In ad-

dition, we identify important temporal trends in predictive accu-

racy for each feature subset, revealing how to best use the face to 

improve the predictive accuracy of classifiers up to four seconds 

before a driving accident.
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information, car speed, longitudinal 
acceleration (feet/second2), braking 
information, and number and type of 
accidents.

Analysis Procedure
Using the collected videos and driving 
simulator data, we constructed a data-
set to build our computational models. 
Figure 2 summarizes the data-analysis 
phases.

Facial-Feature Extraction
The first step in constructing our da-
tasets included extracting key facial 
features and head movements from the 
videos we collected. For this processing,  

we used the Neven Vision library.6 For 
each video frame, the Neven Vision li-
brary automatically detects, without any 
preset markers worn on the user’s face, 
the x and y coordinates of 22 points on 
the face, eye- and mouth-openness lev-
els, and head movements (for example, 
yaw, pitch, and roll). It does this at a rate  
of 30 frames per second. Figure 3 is a 
screenshot of the Neven face-tracking 
software.

Data Synchronization
In the next phase of our analysis, we 
synchronized the video outputs with 
the driving simulator outputs so we 
knew when accidents occurred within  

the video and could extract the pre-
accident facial geometry and vehicle 
information. Our goal was to deter-
mine the optimal way to combine the 
facial movements and vehicle out-
puts to predict when accidents would  
occur. Thus, we sampled several pre-
accident time intervals beginning be-
tween one and four seconds before 
the accident and ranging from one 
to 10 seconds long. For each inter-
val, we extracted the data preceeding  
every major and minor accident in our  
dataset, along with a random number 
of nonaccident intervals to use in our 
analyses.

Time Series Statistics Calculation
After data synchronization, we com-
puted a series of time-domain statis-
tics on the coordinates in each interval 
to use as inputs to our classifiers. We 
calculated averages, velocities, maxi-
mums, minimums, standard devia-
tions, and ranges for each of the Neven 
outputs and for the vehicle outputs 
such as speed, wheel angle, throttle, 
and braking outputs. For some impor-
tant facial characteristics, such as eye- 
and mouth-openness levels, we also 
created five-bin histograms from 0 to  
100 percent to capture their distribu-
tion over the time interval.

Frequency Domain  
Statistics Calculation
We next calculated frequency domain 
statistics on each facial coordinate  

Figure 1. A study participant being monitored in the STISIM driving simulator. The 
simulator runs on a single PC and projects the image of the roadway onto a white 
wall in the lab.

TABLE 1 
Simulation parameters.

Miles Environment Speed limit (mph) Intersections Traffic Challenges

0–1 Suburban 35 6 Heavy Many pedestrians

2–6 Highway 65 0 Moderate Narrow roads, tight curves

7–9 Suburban 35 15 Heavy Many pedestrians

10–11 Highway 55 1 Light Construction zone, obstacles

12–18 Suburban 35 24 Heavy Many pedestrians

19–20 Rural 35 0 Light Dirt roads, obstacles

21–22 Rural 35 1 Moderate Narrow roads, tight curves

23–32 Urban 55 6 Moderate Tight curves
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and each car output. We used the 
Matlab Wavelet toolbox to perform 
the discrete wavelet transform, in 
particular the Daubechies wavelet 
family with orders one, two, and 
four. For each order, we performed a 
level-three decomposition of the input 
signal and collected statistics over the 
detail coefficients of each level includ-
ing averages, ranges, histograms, and 
variances. We calculated these addi-
tional statistics because facial signals 
are dynamic, and we expected that 
their micromomentary movements 
could leak information about the in-
ternal state of the person making the 
expression.

Final Dataset Creation
Finally, for each interval length, we 
combined all the pre-accident and 
nonaccident intervals for each of the 
49 participants into one large dataset. 
To improve the reliability of the face 
measurements, we discarded intervals 
where the average face-tracking con-
fidence (that is, the measure of how 
confident the face-tracking software 
was in its measurement) was lower  
than 60 percent. Our resulting data
set contained a total of 179 minor 
accident instances, 131 major acci-
dent instances, and 627 nonaccident  
instances.

Chi-Square Feature Extraction
Initially, our datasets consisted of 
7,402 facial features and 1,162 ve-
hicle features for each pre-accident 
and nonaccident vector. To identify 
which facial features were the most 
important indicators of unsafe driv-
ing behavior and to more quickly 
train our algorithms, we performed 
a chi-square feature selection for 
each dataset. Tables 2 and 3 list the 
most predictive 20 car features and 
most predictive 20 facial features 
for our major and minor accident 
predictions.

The facial features most predic-
tive of major and minor accidents 
differed greatly. Most of the top 

major accident features were move-
ments of points around the mouth 
and eyes, whereas top minor acci-
dent features centered around the 
nose. This adds new information to 
previous works, which used features 
only around the eyes and mouth to 
predict dangerous driving states.3–4 
Less of a difference existed between 
the top major accident car features 
and top minor accident car features; 
in both cases, the steering wheel 
angle and steering inputs made up 
more than 75 percent of the top 20  
features.

We also found that the most useful 
facial-feature statistics varied across 
accident type. Wavelets proved to  
be the most useful statistics for  
major accident prediction, whereas 
simple minimums and maximums were 
more informative for minor accident  
prediction.

Classification and Results
We experimented with numerous 
state-of-the-art classifiers to predict 
driving accidents, including Bayesian 
nets, decision tables, decision trees, 
support vector machines (SVMs), re-
gressions, and LogitBoost simple deci-
sion stump classifiers.7 We evaluated 
our classifiers according to Cohen’s 

kappa, which corrects for the degree 
of agreement between a classifier’s pre-
dictions and reality by considering the 
proportion of predictions that might 
occur by chance.8 This measure has 
been shown to be more robust than 
simple measures such as hit rate or over-
all accuracy. Values range from zero 
to one, with a score of zero implying 
completely random classification and 
a one implying perfect classification.  

Figure 2. Data-analysis procedure. Facial features were extracted from video 
recordings and synchronized with simulator output logs. Time and frequency 
domain statistics were extracted from the resulting datasets, top features  
were selected, and then used to predict major and minor accidents at varying  
pre-accident time intervals.

Facial
expression

videos

Driving
simulator logs

Time and
frequency
domain
feature

extraction

Machine
learning

algorithm
training

Major
accident

prediction

Chi-square
feature

selection

Minor
accident

prediction

Figure 3. Neven Vision tracking  

points on a subject’s face. We tracked  
22 points around the eyes, nose,  
mouth, and eyebrows at a rate of  
30 frames per second.
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Generally, a kappa scores greater 
than 0.2 are considered statistically 
significant.9

Predicting Minor Accidents
We first attempted to predict only mi-
nor accidents (that is, centerline cross-
ings, tickets, and road-edge excur-
sions) to determine the face’s role in 
minor accident predictions. Our minor 
accident datasets consisted of 806 in-
stances: 179 minor accident instances 
and 627 nonaccident instances. We 
trained five classifiers: a SVM classifier 
with a polykernel, a LogitBoost classi-
fier with the weak classifier of a simple 
decision stump, a multilayer percep-
tron neural net, a decision table, and 
a logistic regression. We built these 
classifiers using the publicly available 
Waikato Environment for Knowledge 
Analysis (WEKA) tool10 and validated 
our models using a tenfold cross vali-
dation. The LogitBoost classifier pro-
vided the highest kappa statistic of 
the five classifiers. Figure 4 (page 90) 
shows the results of the LogitBoost 
classifications across various pre-acci-
dent intervals ranging from one to four 
seconds pre-accident using one to 10 
seconds of data.

An interesting trend appeared 
when analyzing the various pre- 
accident intervals used in minor ac-
cident prediction. Whereas the car  
features proved more useful in pre-
dicting accidents close to the accident 
time (one to two seconds before), fa-
cial features proved more predictive 
longer before the accident (three to 
four seconds before). In fact, in all the 
intervals we analyzed, classifiers using  
the facial features outperformed 
classifiers using the car features at 
four seconds prior to the accident. 
Furthermore, at four seconds pre-
accident, these classifiers outper-
formed the classifiers using all the 
features in four of the 10 intervals. 
This suggests that facial features, 
especially those around the nose, 
could significantly improve driver 
safety systems accuracy a longer time  

Table 2 
Most predictive 20 facial and vehicle features for major  

accident prediction.

Feature Statistic Value

Face

Lower lip center X Wavelet 62 33.3

Upper lip center Y Wavelet 62 26.6

Right lower lip X Wavelet 62 25.8

Right pupil Y Wavelet 9 25.3

Right pupil Y Wavelet 39 25.3

Right upper lip X Wavelet 62 23.2

Left eye aspect ratio Wavelet 88 23.0

Left inner eyebrow Y Wavelet 55 20.9

Lower lip center Y Wavelet 51 20.2

Right inner eyebrow Y Wavelet 55 20.2

Left nostril Y Wavelet 5 18.4

Left mouth corner X Wavelet 72 17.7

Right eye aspect ratio Wavelet 78 17.1

Face X Wavelet 42 16.6

Left eye aspect ratio Wavelet 53 15.8

Head euler X Wavelet 89 15.3

Right pupil Y Wavelet 84 15.1

Left lower lip Y Wavelet 51 15.1

Face scale Wavelet 55 15.1

Right lower lip Y Wavelet 80 14.8

Car

Velocity Average 161.0

Velocity Minimum 154.7

Velocity Maximum 124.5

Steering wheel angle Wavelet 40 88.8

Braking input Wavelet 65 86.9

Steering input Wavelet 71 83.8

Steering wheel angle Wavelet 3 82.7

Steering wheel angle Velocity 78.9

Steering wheel angle Wavelet 43 78.1

Steering wheel angle Wavelet 72 76.2

Steering wheel angle Wavelet 35 76.1

Steering wheel angle Wavelet 41 76.1

Steering input Wavelet 44 74.2

Steering wheel angle Wavelet 2 74.1

Braking input Wavelet 42 73.9

Steering input Wavelet 40 73.5

Steering wheel angle Wavelet 42 73.3

Steering input Wavelet 37 72.5

Steering wheel angle Wavelet 11 72.5

Steering wheel angle Wavelet 37 73.2
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before an accident, allowing drivers 
more time to react and prevent the  
accident.

To further analyze the temporal 
trends in our classifiers’ predictive ac-
curacy, we plotted receiver operating 
characteristic (ROC) curves depict-
ing true versus false positives for the 
classifiers using all features, only car 
features, and only facial features, at 
one to four seconds before accidents 
occurred (see Figure 5). We used seven 
seconds of data for each plot given that 
our highest accuracies occurred in this 
range.

The ROC curves for the face be-
come almost equal to the curves 
using all the data by four seconds 
prior to the minor accidents. This 
implies that by four seconds prior to 
the accident the signal that provides 
the bulk of predictive power comes 
from the face. In all cases, the ROC 
curves using all the features provide 
the best overall tradeoff between 
true and false positives. From this 
we conclude that the face provides 
a signal that isn’t in the vehicular 
features and that this signal occurs 
before the signal provided by the car 
features.

Predicting Major Accidents
We next attempted to predict major 
accidents (that is, hitting objects or 
pedestrians) to determine the face’s 
role in major accident predictions. 
Our major accident datasets con-
sisted of 758 instances: 131 major  
accident instances and 627 non
accident instances. We again trained 
five classifiers, a SVM classifier with 
a polykernel, a LogitBoost classifier 
with the weak classifier of a simple 
decision stump, a multilayer percep-
tron neural net, a simple decision 
table, and a logistic regression. As 
with minor accidents, we built all 
classifiers using WEKA and validated 
the models using a tenfold cross 
validation. Again, the LogitBoost 
classifier gave the highest kappa  
statistics.

Table 3. Most predictive 20 facial and vehicle features  
for minor accident prediction.

Feature Statistic Value

Face

Right outer eye corner Y Minimum 41.6

Mouth aspect ratio Wavelet 57 33.6

Left outer eye corner Y Maximum 32.6

Left pupil Y Average 31.5

Left outer eye corner Y Average 28.0

Left pupil Y Maximum 28.0

Left inner eyebrow X Minimum 27.1

Left pupil X Minimum 26.4

Nose tip Y Minimum 26.2

Right nostril X Maximum 25.9

Nose root X Minimum 25.3

Nose tip X Maximum 25.3

Right nostril X Average 25.0

Face X Velocity 24.7

Left eyebrow center X Minimum 23.9

Left outer eye corner X Minimum 23.5

Left inner eye corner X Wavelet 28 23.3

Right nostril Y Minimum 23.1

Left inner eyebrow X Average 23.0

Left inner eye corner X Minimum 22.4

Car

Steering wheel angle Maximum 143.9

Steering wheel angle Velocity 136.7

Steering input Velocity 128.4

Steering wheel angle Wavelet 3 122.0

Steering input Maximum 119.7

Steering input Wavelet 3 110.3

Steering wheel angle Variance 102.2

Steering wheel angle Wavelet 4 98.4

Steering wheel angle Wavelet 69 98.3

Steering wheel angle Wavelet 70 96.1

Steering wheel angle Average 96.0

Steering wheel angle Wavelet 2 93.5

Steering wheel angle Wavelet 72 93.4

Steering input Variance 93.4

Steering input Wavelet 4 89.9

Steering wheel angle Wavelet 34 89.4

Steering wheel angle Wavelet 44 89.4

Steering input Range 87.8

Steering wheel angle Wavelet 42 87.3

Steering wheel angle Wavelet 41 85.4

Steering wheel angle Wavelet 12 85.2
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Figure 4. Minor accident classifier performance. We used face, car, and all inputs to predict minor accidents one to four  
seconds before accidents occurred using statistics calculated over a range of intervals of data: (a) one, (b) two, (c) three,  
(d) four, (e) five, (f) six, (g) seven, (h) eight, (i) nine, and (j) 10 seconds. Kappa values greater than 0.2 are considered  
statistically significant.
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Figure 6 presents the results of 
the LogitBoost classifiers across  
pre-accident intervals ranging from 
one to four seconds pre-accident and 
using one to 10 seconds of data.

Unlike in the case of minor acci-
dents, where we observed a marked 
increase in the predictive power of 
facial features as the time before the 
accident increased, we see the perfor-
mances remain relatively stable across 
time for major accidents. However, 
as with minor accident classifiers, 
the classifiers that use facial features 
in combination with the car features 
consistently provided a higher classi-
fication kappa than the classifiers that 
used either feature set alone. This sug-
gests that the vehicle features might 
be a better signal than facial features 
in major accidents, but that facial fea-
tures can still improve the classifiers’ 
overall performance.

Predicting Minor  
and Major Accidents 
As a final step, we predicted minor and 
major accidents together by combining 
all major, minor, and nonaccident in-
stances into one large dataset and cre-
ating classifiers on this comprehensive 
dataset. We trained the same five clas-
sifiers andvalidated our models using a 
tenfold cross validation. Once again the 
LogitBoost classifier provided the high-
est kappa statistic of the five sampled 
classifiers.

Figure 7 presents the results of the 
LogitBoost classifications across pre-
accident intervals ranging from one to 
four seconds pre-accident and using 
one to 10 seconds of data.

As in the case of both minor and 
major accident predictions, the classi-
fiers using all the features performed 
best across sampled intervals. In ad-
dition, the performance of the clas-
sifiers using the facial features alone 
tended to remain steady even out to 
four seconds pre-accident, whereas 
the performance of the classifiers us-
ing only the car features tended to  
fall off.

For a closer view of these trends, 
we plotted ROC curves depicting true 
versus false positives for the classifiers 
using all features, only car features, 
and only facial features, at one to four 
seconds before accidents occurred. We 
did this for each class (major and mi-
nor) in isolation. This let us examine 
whether the facial signals were more 
predictive of major or minor accidents 
across the pre-accident time intervals. 
We used seven seconds of data for each 
plot given that our highest accuracies 
occurred using seven seconds of data 
(see Figures 8 and 9).

When viewing the ROC curves for 
the minor accident predictions, it be-
comes apparent that the face accounts 
for most of the predictive accuracy of 
the classifiers after three seconds prior 
to the accidents; the classifiers using 

only the facial features perform essen-
tially the same as the classifiers using 
all the features in combination. How-
ever, the predictive accuracy for major 
accidents appears to come primarily 
from the vehicle features. This con-
firms the results we saw in our binary 
classifiers, where the facial features 
proved more helpful in predicting mi-
nor accidents than major accidents. 
Overall, this suggests that important 
signals for accident prediction exist in 
drivers’ faces up to four seconds prior 
to accidents and that these signals are 
strongest for minor accidents.

A lthough our study proves 
encouraging for the pros-
pect of using facial features 
to aid in driver accident  

Figure 5. Receiver operating characteristic (ROC) plots of classifiers. We used car 
features, facial features, and all features to predict minor accidents one to four 
seconds before accidents occur: (a) one, (b) two, (c) three, and (d) four seconds.
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Figure 4. Minor accident classifier performance. We used face, car, and all inputs to predict minor accidents one to four  
seconds before accidents occurred using statistics calculated over a range of intervals of data: (a) one, (b) two, (c) three,  
(d) four, (e) five, (f) six, (g) seven, (h) eight, (i) nine, and (j) 10 seconds. Kappa values greater than 0.2 are considered  
statistically significant.
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Figure 6. Major accident classifier performance. We used face, car, and all inputs to predict major accidents one to four seconds 
before accidents occur using statistics calculated over a range of intervals of data: (a) one, (b) two, (c) three, (d) four, (e) five,  
(f) six, (g) seven, (h) eight, (i) nine, and (j) 10 seconds. Kappa values over 0.2 are considered statistically significant.
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Figure 7. Minor and major accident classifier performance. We used face, car, and all inputs to predict major and minor  
accidents one to four seconds before accidents occur using statistics calculated over a range of intervals of data: (a) one,  
(b) two, (c) three, (d) four, (e) five, (f) six, (g) seven, (h) eight, (i) nine, and (j) 10 seconds. Kappa values over 0.2 are considered 
statistically significant.
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prediction, it does have several limita-
tions. First, we did not run the study 
on the road because the study design 
was deemed too hazardous to run in 
the physical world until we had run 
the study in a simulator. Thus, our 
study ignores important parameters, 
such as vehicle motion and surround 
effects, that affect driver’s perception 
and reaction to situations. This lim-
its the generalizability of the study’s 
findings, and we must do further 
work to determine the impact of these 
parameters.

Second, although this study thor-
oughly investigated ways of sensing 
impending accidents on the road, it 
didn’t investigate exactly what a per-
vasive system could do to prevent that 
accident. The system could notify the 

driver, take action on its own, or do 
some combination of the two. These 
possible actions are open for future 
work. 

Third, because we didn’t implement 
our system in real time, we couldn’t 
analyze the classifiers’ false-alarm 
rate over time. However, given that 
Neven Vision can process streaming 
facial video at a rate of 30 frames 
per second, and that our feature cal-
culations and classifier predictions 
can be made in under 500 milli
seconds using Matlab on a standard  
2.5-GHz Intel processor, we’re confi-
dent that our system can be run in real  
time.

Finally, as with any statistical model, 
these results are limited to the spe-
cific features included in the original  

models and to these particular datasets. 
If we had sensed other aspects of the 
driver (for example, heart rate) or any 
other part of the driver-environment  
system, we might have generated 
very different models for predicting 
impending driver accidents. Thus,  
future work would benefit from in-
cluding a wider range of sensor data 
to improve the accuracy of such driver 
safety support systems. Generating 
more datasets from other populations 
of participants and other driving con-
texts would also improve the study’s  
generalizability.
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