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Abstract— Pervasive computing provides an ideal framework for active driver support systems in 

that context-aware systems are embedded in the car to support an ongoing human task. In the 

current study, we investigate how and with what success tracking driver facial features can add to 

the predictive accuracy of driver assistance systems. Using web cameras and a driving simulator, we 

captured facial expressions and driving behaviors of 49 participants while they drove a scripted 40 

minute course. We extracted key facial features of the drivers using a facial recognition software 

library and trained machine learning classifiers on the movements of these facial features and the 

outputs from the car. We identified key facial features associated with driving accidents and 

evaluated their predictive accuracy at varying pre-accident intervals, uncovering important temporal 

trends. We also discuss implications for real life driver assistance systems. 

 

Index Terms—Computer vision, Face and gesture recognition, Real-time systems, Pervasive 

computing, Human safety 
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Traffic related accidents are recognized as a serious and growing problem around the world. Every year 

in the U.S. alone, more than 42,000 Americans die as a result of 6.8 million automobile accidents [1]. 

Consequently, driver safety technology has become an active area of research in both industry and 

academia. Pervasive computing environments, with integrated sensors and networking may provide an 

ideal platform for the development of such technology. Taking effective counter measures to enhance safe 

operation of a vehicle requires merging information from many diverse layers of the system. As a first step, 

an active driver safety system (a system designed to prevent accidents from occurring) must monitor 

vehicle state and/or vehicle surroundings. (See “Related Work in Driver Safety” pullout.) However, in 

order to fully transform the vehicle into a smart environment [2], the driver must also be monitored. Human 

factors researchers have long studied the driver’s role in causing and preventing accidents and have found 

that the driver’s physical and emotional state, including driver fatigue [3] and stress levels [4], play a role 

in a significant number of traffic accidents. Thus, many researchers have turned to developing active driver 

safety systems that monitor not only the vehicle, but the driver as well. 

In the current work we investigate the performance of an active driver safety framework that captures 

both vehicle dynamics and the driver’s face, and merges the two levels of data to produce an accident 

prediction. We distinguish the current study from previous work in active driver safety in four ways: (1) we 

use a bottom-up approach, analyzing the movement of a comprehensive set of 22 raw facial features, rather 

than simply analyzing eye gaze or head orientation measures, (2) we evaluate a wide range of time and 

frequency domain statistics in order to determine the most valuable statistics for driving accident 

prediction, (3) we predict major and minor accidents directly, not intermediate driver states such as fatigue, 

and (4) we explore the predictive accuracy of the face and car outputs at varying pre-accident intervals, 

uncovering important temporal trends in predictive accuracy for each feature subset.  

 

 



PC-2009-06-0028.R1 

EXPERIMENTAL TESTBED 
 

For our study, 49 undergraduate students were recruited to drive through a 40-minute simulated course in 

a STISIM driving simulator. The driving simulator, developed by Systems Technology, Inc. [5], was set up 

to run on a single PC and project the simulated image of the roadway onto a white wall in the lab (Fig. 1).  

 
Fig. 1. Participant being monitored in STISIM driving simulator 

 
During the driving course, we projected the sounds of the car, the road, and events happening around the 

car into the simulator room via four PC speakers. The course simulated driving in a suburban environment 

with conditions varying from light to intense traffic. We included many challenging situations, including 

busy intersections, unsafe drivers, construction zones, sharp turns, and jaywalking pedestrians in an effort 

to increase the complexity of the drive (Table1).  

Miles Environment Speed    
Limit 

Intersection
s 

Traffic Challenges 

0-1 Suburban 35 mph 6 Heavy Many pedestrians 
2-6 Highway 65 mph 0 Moderate Narrow roads, tight curves 
7-9 Suburban 35 mph 15 Heavy Many pedestrians  
10-11 Highway 55 mph 1 Light Construction zone, obstacles 
12-18 Suburban 35 mph 24 Heavy Many pedestrians 
19-20 Rural 35 mph 0 Light Dirt roads, obstacles 
21-22 Rural 35 mph 1 Moderate Narrow roads, tight curves 
23-32 Urban 55 mph 6 Moderate Tight curves 

Table 1. Simulation parameters 

We opted for the context of a virtual driving simulator instead of real cars in order to safely collect a 

large sample size of accidents to use in our analyses. This allowed us to generate separate models for major 

accidents (e.g., hitting pedestrians, other vehicles, or off-road objects) and minor accidents (e.g., 

unwarranted change of lanes, driving off the road, or running a stoplight).  

During the experimental sessions we recorded participants’ faces with two Logitech web cameras at a rate 



PC-2009-06-0028.R1 

of 15 frames per second. We compressed the AVI format videos in real-time using DirectX and DivX 

technology. Although many technologies exist for capturing face movements, we opted for image-based 

capture because it does not require special markers or user intervention. This makes our system less 

intrusive, increasing system transparency. We also recorded the output of the simulator during the driving 

sessions, which was a text-based log-file that contained the road conditions, steering wheel angle, lane 

tracking information, car speed, longitudinal acceleration (feet/second2) due to pedal presses and braking, 

braking information, number of accidents, and type of accident.  

ANALYSIS PROCEDURE 
 
 

Using the collected face videos and the driving simulator data, we constructed a dataset to build our 

computational models. Figure 2 summarizes the phases of data analysis. 

 
 

Fig. 2. Data analysis procedure 
 

A. Facial Feature Extraction 

The first step in the construction of our datasets included post-processing the videos we collected to 

extract key facial features and head movements. For this processing we used the Neven Vision library [6]. 

For each frame of the video the Neven Vision library automatically detects, without any preset markers 

worn on the face, the x and y coordinates of 22 points on the face, eye and mouth openness levels, and head 

movements (e.g., yaw, pitch, and roll). This is done at a rate of 30 frames per second. In Figure 3, we 

present a screenshot of the Neven face tracking software.  
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Fig. 3. Neven Vision tracking points on subject’s face 

B. Data Synchronization  

In the next phase of our analysis we synchronized the video outputs with the driving simulator outputs so 

that we knew when accidents occurred within the video and could extract the pre-accident facial geometry 

and vehicle information. Our goal was to determine the optimal way to combine the facial movements and 

vehicle outputs to predict when accidents would occur. Thus, we sampled a number of different pre-

accident time intervals, including intervals beginning between one and four seconds before the accident and 

ranging from one to ten seconds in length. For each interval, we extracted the data for every major and 

minor accident in our dataset, along with a random number of non-accident intervals to use in our analyses. 

C. Time Series Statistics Calculation 

After data synchronization, we computed a series of time-domain statistics on the coordinates in each 

interval to use as inputs to our classifiers. We calculated averages, velocities, maximums, minimums, 

standard deviations, and ranges. These values were computed for each of the Neven outputs and for the 

vehicle outputs such as speed, wheel angle, throttle, and braking outputs. For some important facial 

characteristics, such as eye and mouth openness levels, we also created five-bin histograms from 0% to 

100% to capture the distribution of eye and mouth states over the time interval.  
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D. Frequency Domain Statistics Calculation 

We then calculated frequency domain statistics on each facial coordinate as well as for each car output. 

We used the MATLAB Wavelet toolbox to perform the discrete Wavelet transform, in particular the 

Daubechies Wavelet family with orders one, two, and four. For each order, we performed a level three 

decomposition of the input signal and collected statistics over the detail coefficients of each level including 

averages, ranges, histograms, and variances. We calculated these additional statistics because facial signals 

are dynamic, and we expected that their micro-momentary movements can leak information about the 

internal state of the person making the expression. 

E. Final Dataset Creation 

Finally, we combined all of the pre-accident and non-accident intervals for each of the 49 participants. To 

improve the reliability of the face measurements, we discarded intervals where the average face-tracking 

confidence (i.e., the measure of how confident the face tracking software was in its measurement) was 

lower than 60%. Our resulting dataset contained a total of 179 minor accident instances, 131 major accident 

instances, and 627 non-accident instances.  

F. Chi-Square Feature Extraction 

Initially, our datasets consisted of 7402 facial features and 1162 vehicle features for each pre-accident and 

non-accident vector. To speed up the training of our algorithms and to identify which facial features were 

the most important indicators of unsafe driving behavior, we performed a chi-square feature selection for 

each dataset. The top 20 car features and top 20 face features for our major and minor accident predictions 

are presented in Tables 2 and 3. 

 

 Feature Statistic Value 
 Lower Lip Center X Wavelet 62 33.3 

Upper Lip Center Y Wavelet 62 26.6 
Right Lower Lip X Wavelet 62 25.8 
Right Pupil Y Wavelet 9 25.3 
Right Pupil Y Wavelet 39 25.3 Fa

ce
 

Right Upper Lip X Wavelet 62 23.2 
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Left Eye Aspect Ratio Wavelet 88 23.0 
Left Inner Eye Brow Y Wavelet 55 20.9 
Lower Lip Center Y Wavelet 51 20.2 
Right Inner Eye Brow Y Wavelet 55 20.2 
Left Nostril Y Wavelet 5 18.4 
Left Mouth Corner X Wavelet 72 17.7 
Right Eye Aspect Ratio Wavelet 78 17.1 
Face X Wavelet 42 16.6 
Left Eye Aspect Ratio Wavelet 53 15.8 
Head Euler X Wavelet 89 15.3 
Right Pupil Y Wavelet 84 15.1 
Left Lower Lip Y Wavelet 51 15.1 

 

Face Scale Wavelet 55 15.1 
 Right Lower Lip Y Wavelet 80 14.8 

Velocity Average 161.0 
Velocity Minimum 154.7 
Velocity Maximum 124.5 
Steering Wheel Angle Wavelet 40 88.8 
Braking Input Wavelet 65 86.9 
Steering Input Wavelet 71 83.8 
Steering Wheel Angle Wavelet 3 82.7 
Steering Wheel Angle Velocity 78.9 
Steering Wheel Angle Wavelet 43 78.1 
Steering Wheel Angle Wavelet 72 76.2 
Steering Wheel Angle Wavelet 35 76.1 
Steering Wheel Angle Wavelet 41 76.1 
Steering Input Wavelet 44 74.2 
Steering Wheel Angle Wavelet 2 74.1 

C
ar

 

Braking Input Wavelet 42 73.9 
 Steering Input Wavelet 40 73.5 
 Steering Wheel Angle Wavelet 42 73.3 
 Steering Input Wavelet 37 72.5 
 Steering Wheel Angle Wavelet 11 72.5 
 Steering Wheel Angle Wavelet 37 73.2 

Table 2. Top 20 facial and vehicle features for major accident prediction 

 

 

 

 

 

 Feature Statistic Value 
 Right Outer Eye Corner Y Minimum 41.6 

Mouth Aspect Ratio Wavelet 57 33.6 
Left Outer Eye Corner Y Maximum 32.6 
Left Pupil Y Average 31.5 
Left Outer Eye Corner Y Average 28.0 
Left Pupil Y Maximum 28.0 
Left Inner Eye Brow X Minimum 27.1 

Fa
ce

 

Left Pupil X Minimum 26.4 
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Nose Tip Y Minimum 26.2 
Right Nostril X Maximum 25.9 
Nose Root X Minimum 25.3 
Nose Tip X Maximum 25.3 
Right Nostril X Average 25.0 
Face X Velocity 24.7 
Left Eye Brow Center X Minimum 23.9 
Left Outer Eye Corner X Minimum 23.5 
Left Inner Eye Corner X Wavelet 28 23.3 
Right Nostril Y Minimum 23.1 

 

Left Inner Eye Brow X Average 23.0 
 Left Inner Eye Corner X Minimum 22.4 

Steering Wheel Angle Maximum 143.9 
Steering Wheel Angle Velocity 136.7 
Steering Input Velocity 128.4 
Steering Wheel Angle Wavelet 3 122.0 
Steering Input Maximum 119.7 
Steering Input Wavelet 3 110.3 
Steering Wheel Angle Variance 102.2 
Steering Wheel Angle Wavelet 4 98.4 

Wavelet 69 98.3 Steering Wheel Angle 
Steering Wheel Angle Wavelet 70 96.1 
Steering Wheel Angle Average 96.0 
Steering wheel Angle Wavelet 2 93.5 
Steering Wheel Angle Wavelet 72 93.4 
Steering Input Variance 93.4 
Steering Input  Wavelet 4 89.9 

C
ar

 

Steering Wheel Angle  Wavelet 34 89.4 
 Steering Wheel Angle Wavelet 44 89.4 
 Steering Input  Range 87.8 
 Steering Wheel Angle Wavelet 42 87.3 
 Steering Wheel Angle Wavelet 41 85.4 
 Steering Wheel Angle  Wavelet 12 85.2 

Table 3. Top 20 facial and vehicle features for minor accident prediction 

We found that the facial features most predictive of major and minor accidents differed greatly; most of 

the top major accident features were movements of points around the mouth and eyes, while over 25% of 

the top minor accident features were around the nose. This differs significantly from previous works, where 

one features around the eyes and mouth were used to predict dangerous driving states [3-4]. Less of a 

difference existed between the top major accident car features and top minor accident car features; in both 

cases the steering wheel angle and steering inputs made up over 75% of the top 20 features.  

We also found the most useful facial feature statistics varied across accident type; wavelets proved the 

most useful statistics for major accident prediction, whereas simple minimums and maximums were more 

informative for minor accident prediction. 
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CLASSIFICATION AND RESULTS 
 

We experimented with numerous state of the art classifiers to predict driving accidents, including 

Bayesian Nets, Decision Tables, Decision Trees, Support Vector Machines, Regressions, and LogitBoost 

simple decision stump classifiers [7]. We evaluated our classifiers according to Cohen’s kappa, which 

corrects for the degree of agreement between a classifier’s predictions and reality by considering the 

proportion of predictions that might occur by chance [8]. This measure has been shown to be more robust 

than simple measures such as hit rate or overall accuracy [8]. Values range from zero to one with a score of 

zero implying completely random classification and a one implying perfect classification. Generally, a 

kappa score of greater than 0.2 is considered statistically significant [9]. 

A. Predicting Minor Accidents  

We first attempted to predict just minor accidents (i.e. centerline crossings, tickets, and road-edge 

excursions) in order to determine the face’s role in minor accident predictions. Our minor-accident datasets 

consisted of 806 instances: 179 minor accident instances and 627 non-accident instances. We trained five 

classifiers, a Support Vector Machine classifier with a poly-kernel, a LogitBoost classifier with the weak 

classifier to be a simple decision stump, a Multilayer Perceptron Neural Net, a Decision Table, and a 

Logistic Regression. We built all classifiers for these datasets using the publicly available tool Waikato 

Environment for Knowledge Analysis (WEKA) [10] and validated our models using a ten-fold cross 

validation. The LogitBoost classifier provided the highest kappa statistic of the five sampled classifiers. 

Figure 4 presents the results of the LogitBoost classifications across pre-accident intervals ranging from 

one to four seconds pre-accident and using one to ten seconds of data.  
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Fig. 4. Performance of classifiers using face, car, and all inputs to predict minor accidents one to four seconds before accidents occur using 

statistics calculated over one to ten second long intervals of data. Kappa values over 0.2 are considered statistically significant.  

An interesting trend appeared when analyzing the various pre-accident intervals used in minor accident 

prediction; while the car features proved more useful in predicting the accidents close to the accident (one 

to two seconds before), the face features proved more predictive longer before the accident (three to four 

seconds before). In fact, in all of the intervals we analyzed, classifiers using the facial features 
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outperformed the classifiers using the car features at four seconds prior to the accident. Furthermore, at four 

seconds pre-accident, these classifiers outperformed the classifiers using all of the features in four of the ten 

intervals. This suggests that facial features, especially those around the nose, could significantly improve 

the accuracy of driver safety systems further prior to accidents, thus allowing drivers more time to react and 

prevent the accident.  

In order to further analyze the temporal trends in predictive accuracy of our classifiers, we plotted ROC 

curves depicting true vs. false positives for the classifiers using all features, only car features, and only 

facial features, at one to four seconds before accidents occurred. We chose to use seven seconds of data for 

each plot given that our highest accuracies occurred using seven seconds of data. We present these plots in 

Figure 5. 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 Second Before Accident

T

r

u

e

 

P

o

s

i

t

i

v

e

s

False Positives

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

2 Seconds Before Accident

T

r

u

e

 

P

o

s

i

t

i

v

e

s

False Positives

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

3 Seconds Before Accident

T

r

u

e

 

P

o

s

i

t

i

v

e

s

False Positives

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

4 Seconds Before Accident

T

r

u

e

 

P

o

s

i

t

i

v

e

s

False Positives

 

 

all

car

face

 



PC-2009-06-0028.R1 

Fig. 5. ROC plots of classifiers using all, car, and face features to predict minor accidents one to four seconds before accidents occur 

We note that the ROC curves for face improve to be almost equal to the curves using all the data by four 

seconds prior to the minor accidents. This implies that by four seconds prior to the accident the signal that 

provides the bulk of predictive power comes from the face. We also note that in all cases the ROC curves 

using all the features provides the best overall tradeoff between true and false positives. From this we 

conclude that the face provides a signal absent within the vehicular features and that and that this signal 

continues further before the accidents than the signal provided by the car features.  

B. Predicting Major Accidents  

We next attempted to predict just major accidents (i.e., hitting objects or pedestrians) in order to 

determine the face’s role in major accident predictions. Our major-accident datasets consisted of 758 

instances: 131 major accident instances and 627 non-accident instances. We again trained five classifiers, a 

Support Vector Machine classifier with a poly-kernel, a LogitBoost classifier with the weak classifier to be 

a simple decision stump, a Multilayer Perceptron Neural Net, a simple Decision Table, and a Logistic 

Regression. We built all classifiers for these datasets using the publicly available tool Waikato 

Environment for Knowledge Analysis (WEKA) [10] and validated our models using a ten-fold cross 

validation. Again, the LogitBoost classifier provided the highest kappa statistic of the five sampled 

classifiers. Figure 6 presents the results of the LogitBoost classifiers across pre-accident intervals ranging 

from one to four seconds pre-accident and using one to ten seconds of data. 
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Fig. 6. Performance of classifiers using face, car, and all inputs to predict major accidents one to four seconds before accidents occur using 

statistics calculated over one to ten second long intervals of data. Kappa values over 0.2 are considered statistically significant. 

 

 Unlike in the case of minor accidents, where we observed a marked increase in the predictive power of 

facial features as the time before the accident increased, we see less of a trend in the predictive power of the 

face features over the car features at various time intervals for major accidents. However, again, we note 
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that the classifiers that use facial features in combination with the car features consistently provided a 

higher classification kappa than either the classifiers that used facial features alone or the classifiers that 

used car features alone. This suggests that the vehicle features may demonstrate more signal than facial 

features in the case of major accidents, but that facial features can still be used to improve the overall 

performance of the classifiers. 

C. Predicting Minor and Major Accidents  

We next attempted to predict minor and major accidents together. We did this by combining all major, 

minor, and non-accident instances into one large dataset and creating classifiers on this comprehensive 

dataset. We trained five classifiers, a Support Vector Machine classifier with a poly-kernel, a LogitBoost 

classifier with the weak classifier to be a simple decision stump, a Multilayer Perceptron Neural Net, a 

simple Decision Table, and a Logistic Regression and validated our models using a ten-fold cross 

validation. Once again the LogitBoost classifier provided the highest kappa statistic of the five sampled 

classifiers. Thus Figure 7 presents the results of the LogitBoost classifications across pre-accident intervals 

ranging from one to four seconds pre-accident and using one to ten seconds of data.  
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Fig. 7. Performance of classifiers using face, car, and all inputs to predict major and minor accidents one to four seconds before accidents 

occur using statistics calculated over one to ten second long intervals of data. Kappa values over 0.2 are considered statistically significant. 

 As in the case of both the minor and major accident predictions, the classifiers using all the features 

performed the best across sampled intervals. We also observe that the performances of the classifiers using 

the facial features alone tend to remain steady even to four seconds pre-accident, whereas the performances 

of the classifiers using only the car features tend to fall off. For a closer view of these trends we plotted 
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ROC curves depicting true vs. false positives for the classifiers using all features, only car features, and 

only facial features, at one to four seconds before accidents occurred. We did this for each class (major and 

minor) in isolation. In this way we could examine whether the facial signals were more predictive of major 

or minor accidents across the varying pre-accident time intervals. We chose to use seven seconds of data 

for each plot given that our highest accuracies occurred using seven seconds of data. We present these plots 

in Figures 8 and 9. 
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Fig. 8. Minor accident ROC curves using all, car, and face features at varying pre-accident time intervals. 
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Fig. 9. Major accident ROC curves using all, car, and face features at varying pre-accident time intervals. 

When viewing the ROC curves for the minor accident predictions it becomes apparent that the face 

accounts for most of the predictive accuracy of the classifiers after three seconds prior to the accidents; the 

classifiers using only the facial features perform essentially the same as the classifiers using all the features 

in combination. However, the predictive accuracy for major accidents appears to come from primarily the 

vehicle features. This confirms the results we saw in our binary classifiers, where the facial features proved 

more helpful in predicting minor accidents than major accidents. Overall, this suggests that important 

signals for accident prediction exist in drivers’ faces up to four seconds prior to accidents, and that these 

signals are strongest in the case of minor accidents.  
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LIMITATIONS 
 
 Despite the encouraging results of our study, there are several limitations to note. First, we refrained from 

running this study on the road because the study design was deemed too hazardous to be run in the physical 

world until we had first run the study in a simulator. Thus, our study ignores important parameters such as 

vehicle motion and surround effects, which affect driver's perception and reaction to situations. This limits 

the generalizability of the study findings, and further work must be done to determine the impact of these 

parameters. 

Second, although this study thoroughly investigated ways of sensing impending accidents on the road, it 

did not investigate exactly what a pervasive system could do in order to prevent that accident; the system 

could notify the driver, take action on its own, or do some combination of the two. The actions that the 

system takes to prevent the accident are open for future work.  

Third, we did not actually implement our system in real-time. Thus we could not analyze the false alarm 

rate over time for our classifiers. However, given that Neven Vision is capable of processing streaming 

facial video at a rate of 30 frames per second, and that our feature calculations and classifier predictions can 

be made in under 500 ms using MATLAB on a standard 2.5 GHz Intel Processor, we are confident that our 

system is capable of being run in real-time.  

Fourth, as with any statistical model, these results are limited to the specific features that this study 

included in the original models and to this particular data set. If we had sensed other aspects of the driver 

(e.g., heart rate) or any other part of the driver-environment system, we might have generated very different 

models for predicting impending driver accidents. Thus, future work would benefit from including a wider 

range of sensor data to improve the accuracy of such driver safety support systems. Similarly, generating 

more data sets that include other populations of participants and other driving contexts would improve the 

generalizability of the study. 

CONCLUSION AND FUTURE WORK 
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Integrating information from the environment (e.g., weather, traffic, hazards) with information from the 

car (e.g., speed, acceleration) and the driver (e.g., facial features) proves a promising way to leverage 

today’s sensor technologies to actively support driver safety. By identifying the most useful features for 

major and minor accidents and exploring the best temporal windows in which to use those features, we 

show that facial features can improve the predictive of classifiers up to four seconds prior to driving 

accidents. This suggests that the use of facial feature sensors along with vehicle sensors can improve the 

performance of active driver support systems in the future.  
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Related Work in Active Driver Safety Systems 

Much work has been done in the area of holistic vehicle sensing for active driver safety, including 

systems for monitoring vehicle environment, vehicle state, and more recently driver state. Systems 

developed to monitor vehicle environment include pedestrian and obstacle detectors, lane-guidance 

systems, rear-bumper proximity sensors, blind-spot car detectors, automatic windshield wipers, and 

surround imaging systems for parking assistance1-6. Systems for monitoring vehicle state include systems to 

track vehicle location via GPS and accelerometers and other sensors to monitor driving speed, steering 

wheel angle, breaking, and acceleration7-8. Systems for monitoring driver state include frameworks that 

gauge driver fatigue, drowsiness, or stress level9-14. In the current paper, we extend previous work by using 

computer vision algorithms to directly map specific facial features to unsafe driving behavior. We use a 

comprehensive set of raw facial feature points, including points around the nose that are absent in prior 

works. Futhermore, we do not infer any specific mental states such as fatigue, but rather implement a more 

empirical approach that uses machine learning algorithms to find and use the facial features that are the 

most correlated with accidents. In addition, we identify important trends in predictive accuracy for each 

feature subset at various temporal windows, showing how the face can best be used to improve the 

predictive accuracy of classifiers up to four seconds prior to accidents.  
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