
Field Studies of Computer System Administrators:
Analysis of System Management Tools and Practices

Rob Barrett, Eser Kandogan, Paul P. Maglio, Eben Haber
Leila A. Takayama, Madhu Prabaker

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120, USA
+1 214 233 3059

{barrett, eserk, pmaglio}@almaden.ibm.com, ehaber@us.ibm.com,
takayama@stanford.edu, madhukp@berkeley.edu

ABSTRACT
Computer system administrators are the unsung heroes of the
information age, working behind the scenes to configure,
maintain, and troubleshoot the computer infrastructure that
underlies much of modern life. However, little can be found in the
literature about the practices and problems of these highly
specialized computer users. We conducted a series of field studies
in large corporate data centers, observing organizations, work
practices, tools, and problem-solving strategies of system
administrators. We found system administrators operate within
large-scale, complex environments that present significant
technical, social, cognitive, and business challenges. In this paper,
we describe system administrator tool use in critical, high-cost,
labor-intensive work through observational, survey, and interview
data. We discuss our findings concerning administrator needs for
coordinating work, maintaining situation awareness, planning and
rehearsing complex procedures, building tools, and supporting
complicated interleaved workflows.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – interaction styles; Group and Organization Interfaces
– collaborative computing; K.6.4 [Management of Computing
and Information Systems]: Systems Management

General Terms
Design, Human Factors.

Keywords
System Administration, Ethnography, Collaboration, Command-
Line Interfaces, Situation Awareness.

1. INTRODUCTION
System administrators (sysadmins) design, configure,
troubleshoot, and maintain complex computer systems comprised
of dozens of components (e.g., database management systems,
web servers, application servers, and load balancers), and
hundreds of servers that are distributed across multiple networks
and operating system platforms. Because the computational
infrastructure of everyday life depends on sysadmins performing
their work nearly flawlessly, system management costs now
account for most of the costs of setting up and running large
computing systems, far outstripping that of buying hardware and
software [10], [11], [15]. Furthermore, since systems are so
complex and so difficult to manage, people are often blamed for
failures [15]. Thus, sysadmin work places high cognitive
demands on practitioners—as sysadmins troubleshoot systems,
making sense of millions of log entries by controlling thousands
of configuration settings, and performing tasks that take hundreds
of steps—and also places high social demands on practitioners—
as sysadmins need organizational and interpersonal skills to
coordinate tasks and collaborate effectively with others.

Despite the importance of sysadmins, few HCI studies report on
their particular problems and practices (see [1] and [17]).
Nevertheless, sysadmins themselves have reported on certain
aspects of behavior and tools, including types of work and
possible prototype tools [1], and day-in-the-life [4] and workflow
studies [6]. Also, work on command line interfaces [20],
computer programmers [19], and the relationship between human
control and automation [18] are all potentially applicable to
problems in system administration.

Because of the lack of in-depth studies of this critical user group,
we conducted field studies in large corporate data centers,
observing the organization, work practices, tools, and problem-
solving strategies of many kinds of sysadmins. Field studies offer
insights into work that cannot be found in focus groups, lab
studies, or surveys alone (see [7], [12], [14]). When work is
examined in context, it becomes clear that people work creatively
with technology to support their practices flexibly and
adaptively—though systems are often designed inflexibly, people
make do, naturally working around limitations and built-in
constraints [22]. Field studies also show the ad hoc day-to-day
interpersonal interactions not visible in a laboratory setting.

leila
Typewritten Text
Barrett, R., Kandogan, E., Maglio, P. P., Haber, E., Takayama, L., & Prabaker, M. (2004). Field studies of computer system administrators: Analysis of system management tools and practices. Proceedings of Computer Supported Collaborative Work: CSCW 2004, USA, 388-395.

leila
Typewritten Text
© ACM, (2004). This is the author’s version of the work. It is posted here by permission of ACM for yourpersonal use. Not for redistribution. The definitive version was published in CSCW 2004 http://doi.acm.org/10.1145/1031607.1031672

In what follows, first we detail our methods. Second, we provide
an overview of our results by describing the typical tasks, tools,
and environment of our sysadmins based on observations, diary
entries, and survey data. Third, we describe four cases that
illustrate some of the major issues we observed. Finally, we
discuss our findings on collaboration, situation awareness,
planning, tool building, and multitasking.

2. DEFINITIONS AND METHODS
We define sysadmins broadly as those who use their technical,
social, and organizational skills to architect, configure, administer,
and maintain computer systems, including operating systems,
networks, security systems, infrastructure, databases, web servers,
and applications. In the work reported here, we focused primarily
on database and web sysadmins. We used a variety of techniques
to gather data, including surveys, diary study, interviews, and
naturalistic observations.

2.1 Surveys
We conducted a preliminary survey in mid-2002 to help us begin
to understand the system administration domain. In this survey,
sixteen web administrators answered a variety of questions
regarding their background, tasks, operations, computer
environment, and so on.

More recently, we conducted an extensive survey in which we
specifically asked about collaboration practices and tool use. We
collected data from 101 sysadmins of various specialties
(database, web, operating system, network) solicited through
newsgroups, mailing lists, local and national sysadmin user
groups. We analyzed these data both quantitatively (rating
questions) and qualitatively (open-ended questions).

2.2 Diary Study
One of our sysadmin participants kept a log of his daily activities
for ten months in 2002-2003. His diary included five to ten items
per day, identifying tasks such as meetings, problem solving, or
configuration, along with other relevant details, including people
he worked with. We analyzed this diary by categorizing each
entry as a specific kind of activity, and by noting what tools and
people were mentioned for each activity.

2.3 Interviews
We conducted 12 interviews with sysadmins, managers, team
leads, and others in various roles. Interview questions typically
focused on their issues and concerns, challenges in their work,
organizational questions, etc. Interviews took place in their
offices, usually as they worked, which helped us focus questions
on their work and follow leads as issues arose.

2.4 Naturalistic Observations
We conducted six field studies of database and web administrators
at large industrial service delivery centers in Colorado, New York,
Connecticut, and North Carolina. Two researchers typically
participated in each visit, which lasted three to five days.
Typically, we followed one sysadmin per day as he or she worked
in the office, attended meetings, and so on. One researcher took
notes and occasionally asked questions, while the other
videotaped interactions with the computer and other activities in
the office. We asked our participants to speak aloud while
working, which they often did. At the end of each day, we asked
clarifying questions about the observations from that day. We
collected physical and electronic materials and took pictures of

the artifacts in the work environment. In all, approximately 200
hours of videotape were collected, reviewed, and analyzed to
varying degrees.

3. TASKS, TOOLS, AND ENVIRONMENT
Over 25 days of observation, we watched 12 different sysadmins
of various skills and specializations. When taken individually,
each day had rather different characteristics. When taken together
however, some aggregate patterns emerge.

3.1 Tasks
Our diary analysis revealed that a significant proportion of tasks
(23%) were meetings, nearly the same as found in [4]. These
meetings were usually recurring status meetings in which
sysadmins and managers discussed changes to computer systems,
suggesting that the job is as much social as technical. In fact, even
for technical tasks such as troubleshooting and maintenance, our
sysadmin reported working with others about half the time.

The second most common category was planning (21%), which
was often combined with testing (6%). Production systems had
limited time windows when changes were permitted, so
sysadmins planned and tested complex operations on testing and
staging systems. Maintenance (19%), troubleshooting (11%), and
installation (8%) tasks accounted for the remaining time.

3.2 Tools
Most of the sysadmins used laptops at their offices during regular
hours as well as off-hours. Off-hours work was usually done at
home through a dial-up or high-speed connection. For
collaboration and communication, sysadmins relied on a standard
set of common applications: telephone, web browser, email, and
instant messaging. They also used common productivity tools
such as a shared calendar, word processor, spreadsheet, etc.
Sysadmins’ primary source of information was the web. General
purpose web search engines were the primary tool used to find
online documentation, discussion databases, problem reports, and
user groups. Other web-based tools were used for activities such
as timesheet reporting, problem tracking and scheduling.

For sysadmin tasks, we saw tools supplied by systems vendors
and third parties, as well as tools created by sysadmins
themselves. These tools came in three types: command-line,
including basic UNIX utilities; graphical system admin consoles,
such as IBM DB2™ Control Center and Microsoft® Management
Console; and web-based administration tools, such as BEA™
WebLogic™ Workshop and Oracle® Enterprise Manager Console.

The sysadmins seldom came into physical contact with the
machines they managed, rather, they used terminal programs for
text-based access and screen sharing tools to interact with remote
computers graphically.

3.3 Environment
The sysadmins we observed worked in an environment of
significant risk, system complexity, and system scale. Risk
resulted from the critical nature of the managed systems.
Significant system failures may have serious consequences, such
as large sums of lost revenue and termination of employment. To
compensate for risk, large installations typically have multiple
levels of systems: sandbox systems that allow unlimited
experimentation, but have no data; test systems that have sample
data and applications; staging servers that permit relatively open

access, and are exact replicas of production servers, to which
access is highly restricted.

System complexity and scale was exemplified by sites with
hundreds of servers that support large scale operations; numerous
components such as database systems, web servers, etc. each
requiring different expertise; configuration files with thousands of
parameters connected by intricate interrelationships; event logs
with millions of entries; and complex tasks requiring dozens of
steps to perform.
The sysadmins in our studies were organized in teams of 5 to 12
based on specialty (e.g., database, web server, operating system).
These teams depended on a team leader (often remotely located)
for technical direction, and on a manager for cost issues and
performance evaluation. Teams from each specialty worked
together to support a number of customer accounts and
applications, supported by managers responsible for system
changes, system availability, and overall customer relationship.

4. OBSERVATIONS
Through our field studies we discovered patterns of sysadmin
work and tool use. In what follows, we describe four cases that
illustrate important aspects of sysadmin work practices.

4.1 Case 1: Seven People, One Command
Line
Sysadmin George was assigned to create a new web server on a
machine outside the corporate firewall and connect it to an
authentication server inside the firewall on one of the customer
accounts he supported.
His manager sent detailed instructions for the process, which
included sample commands for over twenty steps to be performed
under a very tight deadline. The first few steps for creating the
new web server appeared to go well, but configuring the
authentication server to work with the new web server produced a
vague error message: “Error: Could not connect to server.”

For the next few hours, George was involved in increasingly
intense troubleshooting. Through telephone, e-mail, instant
messaging, and in-person conversations, he worked with seven

different people, including his manager, the network team, his
office mate, the architect of the system, a technical support
person, a colleague, and a software developer. Each asked him
questions about system behavior, entries in log and configuration
files, error codes, and so on, and each suggested commands to
run. Each sought his attention and trust, competing for the right to
tell him what to do (see [13]).

We refer to this collaboration pattern as “Seven People, One
Command Line,” as various people participated in
troubleshooting, but only George had access to the troubled
system (Figure 1). His manager wanted to know when the
problem would be fixed and whether others should be redirected
to help him complete the task on time. The support person wanted
to resolve the problem ticket and end the call as quickly as
possible. His colleague wanted to help within the limitations
imposed by his own responsibilities. The system architect wanted
to know if there was any problem in the overall design without
being mired in the details. Other specialists waited for instructions
to manipulate the subsystems they were responsible for.

The problem was eventually found to be a network
misconfiguration. George misunderstood the meaning of a certain
configuration parameter for the new web server (ambiguously
labeled as “port”) to be for communication from the web to the
authentication server, when in fact it was the opposite. The former
would have been permitted by the firewall, but the latter was not.
George’s misunderstanding affected the remote collaborators
significantly throughout the troubleshooting session. We
witnessed several instances in which he ignored or misinterpreted
evidence of the real problem, filtering what he communicated by
his incorrect understanding of the system configuration, which in
turn greatly limited his collaborators’ ability to understand the
problem. George’s error propagated to his collaborators. The
solution was finally found by the one collaborator who had
independent access to the systems, which meant his view of the
systems was not contaminated by George’s incorrect
understanding (see [13]).

4.2 Case 2: The Lost Semicolon
Christine, a database administrator, was asked to perform a

Figure 1. Throughout the long
hours of troubleshooting, our
admin George engaged with at
least eight different individuals
or groups using various means of
communication. In this figure,
instant message communication
is shown in single solid lines; e-
mail communication in dashed
lines; phone conversations in
dotted-and-dashed lines; and face
to face communication in dotted
lines. Also shown here in double
solid lines is access to the
problematic server, which only
George and his colleague had
during the session.

complex database operation that she had never done before. The
task included moving database tables to a different file system on
the production server to free up disk space. Because she had no
experience with this task, her colleague Mike agreed to help. He
had notes and executable scripts from the last time he had
performed this operation. As the task involved production servers
and a limited maintenance time window, they rehearsed the
operations on three test servers first. Mike sat with Christine
during rehearsal and verified each operation as she followed his
instructions. The instructions included specific commands to run
as well as notes such as “Check that the tables were created
properly” at various points. After the commands and scripts were
run on each test system, they were manually edited in a text editor
to change such details as server names for the subsequent test.
In the final rehearsal, errors appeared during the execution of one
of the scripts because a semicolon that separated consecutive
commands had been deleted accidentally when Christine edited
the script. The script was aborted manually, but not before several
commands in the script had run. In fact, they thought the script
had created an incorrect database table, though it had not. When
they tried to delete this (nonexistent) table, they received error
messages that they interpreted as syntax errors. They looked up
documentation and manually executed many different (and risky)
commands to delete the table. It took them quite a while to realize
that the table had not been created in the first place.

4.3 Case 3: Crontab as User Interface
Jeanette and Bob, both database administrators, needed to perform
an online backup operation to store all database contents while the
production database system continued to serve requests. As such
backup operations take quite a while to run, they developed the
practice of performing this kind of task using the UNIX crontab
utility, which is normally used for executing regularly scheduled
tasks as background processes that continue to run even after the
terminal connection has been closed.

As usual, Jeanette edited the crontab file, which contained the list
of scheduled commands they frequently ran. She uncommented
the line for the backup command, and set the execution time to be
exactly one minute after the current time. She then saved the file
and the crontab utility automatically started running scheduled
tasks. As soon as she saved the file, she realized that she had
accidentally uncommented the line for an offline backup, which
would shut down the database system, rather than an online
backup, which would not (Figure 2). She immediately opened the
crontab file again to remove the wrong command and save it
within the short one-minute time window before the backup was
scheduled to start. Having done this, she needed to check to make
sure the incorrect backup process had not in fact started. She did
so by rapidly executing various process status commands and by
checking the server logs on Bob’s suggestion.
This time, Jeanette was lucky; the offline backup process had not
started. She told us that she usually gave herself more than one
minute before issuing such commands to allow time to catch these
sorts of errors. In this case, the problem was that the commands
for offline and online backup were right next to each other in the
crontab file, and the two commands differed only by one character
(onltape vs. ofltape). In addition, Jeanette and Bob had been
discussing a different offline backup task at the same time,
possibly leading to confusion.

Figure 2. Jeanette’s cursor was on the wrong line of the
crontab file, setting execution time for offline backup rather
than for online backup, which was located two lines above.

4.4 Case 4: The Crit Sit
“Crit sits” are critical situations that are initiated when a customer
is extremely unhappy with the service level of a system. All
responsible parties are brought together either physically and/or
virtually to work on the problem until it is fixed. We observed a
crit sit for an intermittent problem with a web application that
occurred across multiple systems when the number of connections
to the application reached a certain level. In this case, the crit sit
would be considered resolved if the system ran for three
consecutive days with no problems.

Crit sits are very costly, as at least one member of every relevant
specialty team is required to participate. In this case, it involved
seven to ten people at various times, and each person also had
backup support. Typically these sysadmins converge on a central
location and sit together in a “war room” for the duration of the
problem. One sysadmin even flew in from his regular location on
8 hours notice. Of course, for practical reasons, not everyone can
be in one location all the time, so conference calls and instant
message sessions or “chat rooms” are set up to keep everyone in
contact. The “all hands” chat room was used for general
awareness as the situation developed, such as reporting the current
number of connections at all times.

A number of times we observed all sysadmins stopping to focus
on collecting more data when the connection reached the
maximum and the application stopped responding. To automate
this process and to analyze the data, the sysadmins decided to
write a script that would report the number of connections and the
time. They planned to use this report to correlate connection data
with log data from other systems. Though this was a rather simple
script to write, it took longer than expected and eventually turned
into a competition among sysadmins as to who could write it most
quickly and most elegantly. Interestingly, everyone had difficulty
creating the desired output where they tried to put the time and the
connection count on the same line in the report.

Throughout the crit sit, multiple discussions went on
simultaneously, with occasional interruptions when the
connections “maxed out” and the different sysadmins performed
tasks in their own areas of expertise. At a number of points,
finding the right person to do the tasks became an issue as
backups and primary sysadmins traded places and joined in and
dropped out of the “all hands” chat room or the conference call. In

one case, a sysadmin wanted to test his hypothesis and needed a
database administrator to shutdown the database server. He first
called her name on the conference call, when no one replied he
then tried the chat room. Fortunately, her backup was found
eventually and instructed to perform the shutdown.

Troubleshooting intermittent multi-system problems is a time-
consuming task, as it is extremely difficult to collect all the
information from all the systems involved at the right time and
collectively make sense of it. This crit sit continued for two weeks
after we left.

5. DISCUSSION
We observed that available sysadmin tools do a relatively poor job
of supporting sysadmins in several important areas. Specifically
we saw (1) collaborative work hampered by lack of tools for
sharing system state; (2) problems caused by poor situational
awareness, as complex systems require awareness of different
levels of detail at different times; (3) lack of support for planning
and rehearsal causing problems or delaying problem resolution;
(4) both graphical user interface (GUI) and command-line
interface (CLI) tools exhibiting deficiencies in supporting
sysadmin work, requiring sysadmins to build their own tools; and
(5) sysadmins spending hours maneuvering through complex
information, tools, and human barriers to get the job done. We
discuss each in turn.

5.1 Collaboration and Communication
The first case, Seven People and One Command Line,
demonstrated how sysadmins rely extensively on human-human
interaction and communication to accomplish their jobs. We
analyzed this case in detail, and found that 90% of the
troubleshooting time was spent in human-human interaction (via
telephone 44%, instant messaging 23%, and face-to-face 22%)
and only 9% of the time was spent in human-computer interaction
(via the command line 6%, and web browser 3%). Furthermore,
more than 20% of the time when people were communicating,
they were talking about how to communicate with one another
(e.g., “I’ll send you that information via e-mail, what is your
address?” or “You should call tech support number at 1-800-…”).

Collaboration was one way to manage risk, system complexity,
and system scale. No single individual understood every aspect of
systems, so having a group of experts helped. In addition, systems
required 24×7 coverage, so handoffs had to be made with shift
changes. Lines of responsibility were carefully defined so that
different people have control of different subsystems. For
example, database administrators controlled the data schema,
indices, and storage, but application administrators controlled the
data content, and OS administrators controlled the server machine.
There was also a division in focus in which the sysadmins were
responsible for technical details, managers were responsible for
schedules and customer satisfaction, architects were responsible
for overall design, and so on. Finally, collaboration was required
even among those with similar skills and responsibilities because
a “second pair of eyes” was often needed to help build an accurate
view of the problem and its solution, as seen in both Seven People
and Once Command Line Case and the Lost Semicolon cases.
Tools provided uneven support for sysadmins’ collaboration and
communication needs. We saw that telephone, instant messaging,
and email were heavily used, and we were told that pagers,
cellular phones, and two-way radios were also used at times.

These tools were quite dependable, but there were three areas that
were clearly lacking. First, no single medium worked for all
situations. We commonly observed sysadmins changing media;
for example, moving from instant messaging to telephone when
important information needed to be communicated rapidly with
emotional force, shifting back to instant messaging when a cryptic
error message needed to be conveyed precisely, and then shifting
to email to send a large log file. However, the different media
were not well integrated: phone numbers were sent by instant
messages, telephones had limited channels and were sometimes
busy, and electronic meetings required further coordination of
meeting codes and passwords.

Another problem with available tools was that they did not
provide for easy sharing of system state and other context. As
seen in the Seven People and One Command Line case, remote
collaborators received all their information about the problem
from George verbally, so their information was filtered by
George’s misunderstanding of the system’s operation. This case
clearly indicates that although improved networking and
communications technology increased the social interactions in
the work place, misunderstandings are still commonplace [16]. If
the system administration tools allowed others to actually view
and interact with problematic systems (with proper approval and
authentication), they would have been better able to assess the
problem. Likewise, it was not easy to gather all relevant data for a
problem together and share it. Logs, configurations, commands,
and errors, each had to be found, composed, and sent. No
sysadmin tools we observed had such a “work together” feature.

5.2 Planning and Rehearsal
As the Lost Semicolon case showed, planning and rehearsal were
important work practices. Sysadmins worked with production
systems that could not go down except during narrow time
windows of scheduled maintenance. Though brief system failures
might have been tolerable, loss of data was never acceptable. We
observed that most actions were carefully planned and rehearsed
before they were performed on production systems. Database
administrators had the most extensive planning and rehearsal
procedures, but we observed web admins also doing considerable
planning before making system changes. Rehearsals not only gave
sysadmins opportunities to demonstrate correctness of operations,
but also practice at solving problems and timing steps so they
could be sure the task would be accomplished during the allotted
time window.

How well did existing interfaces and tools support rehearsal? We
did not observe the use of any tool that seemed particularly suited
for planning and rehearsal. As the Lost Semicolon case showed,
manually editing command-line scripts as they move from system
to system was hazardous. The database tools provided no means
to avoid manual editing and, even worse, provided no way of
syntax checking a script without running it against the database.
Vendor provided graphical tools in this case were not designed for
replicating actions on different systems.

An important part of rehearsal was logging each step of the
procedure so that system output could be compared between
rehearsal and production runs. Recording the time of long-running
steps was important both as a check on correctness and for
estimating the time of the production run. Rehearsal tools ought to
help track timing and output information, both within a given
activity as it works its way through rehearsal and across activities

so that similar operations done later can take advantage of
previous runs.

5.3 Situation Awareness
System complexity put substantial cognitive load on sysadmins as
they were troubleshooting systems by coordinating information
from many sources and many people. The Crit Sit case is an
excellent example of sysadmins dealing with dynamic and
complex processes at many different levels of abstraction. Radical
co-location setups such as this allow participants easy and
committed access and to coordinate activities around shared
events and work artifacts [23]. In this case, participants had to be
aware of systems that were not only complex, but that also
changed frequently. Furthermore, sysadmins had to share situation
awareness across shifts and areas of responsibility. Sysadmins
necessarily had incomplete mental models of the complete
systems they managed. As one sysadmin put it, “If understanding
the (whole) system is a prerequisite for operating the system, we
are lost.”

The Seven People and One Command Line case provided another
example of the need for situation awareness. In that case, situation
awareness depended on understanding the interaction between
several components in an overall system. Each system had its own
management interface and so gaining overall awareness was very
difficult. George managed this complexity by rapidly moving
among multiple management tools and working together with
many experts, but there was no single view of the entire system. A
simple drawing of the configuration might have made the
situation clear and avoided hours of troubleshooting.

The Lost Semicolon case provided further examples of problems
caused by faulty situation awareness. The sysadmins tried to
delete a database table they thought they had incorrectly created,
but which in fact they had not. In this case, their command-line
environment did not aid situation awareness. In contrast, a
graphical tool for managing the database would likely require
clicking on a table icon to delete it; if the icon had not been there,
it would be obvious that there was nothing to delete. Of course, in
an environment containing thousands of tables, presenting so
many icons would not be simple, which is a separate but related
issue in attaining situation awareness. There must be a dynamic
middle ground between lack of information and information
overload.

5.4 Tools and Tool Building
The very existence of sysadmin-authored scripts might seem to be
evidence that the supplied tools were at times inadequate.
However, customization and automation seem a normal part of
sysadmin work. Professional tool designers simply cannot foresee
all possible tasks, needs, and requirements. Many tools failed to
support sysadmin needs in the areas of scale, complexity, and risk
of the operations, as noted in the Lost Semicolon and Crontab as
User Interface cases. Sysadmins often applied long-running
operations to very large numbers of objects, making automation
and scripting crucial. Most GUIs we observed fail to support this.
CLIs offer more power, but with less ease of use and situation
awareness.
One side benefit of sysadmins building their own tools is that they
know and trust the resulting tool: Sysadmins know that the ps
command in their scripts correctly reports the process status
whereas a “running” status light on a graphical interface might

only mean that the monitoring process crashed, as we observed in
a number of cases.

At one site, we observed a database administrator who had
developed a set of monitoring scripts that periodically gathered
data from a large number of databases, creating web pages with
status reports and triggering alarms when certain criteria were
met. These scripts were used across the organization, but
responsibility for maintenance rested with the one administrator.
A web administrator at another site had configured a similar
system: a program that regularly checked various servers, sending
e-mail or pager messages in case of errors. However, most of the
sysadmins we observed did not have the skills or time to build
such an environment.

As shown by the Crontab as User Interface and the Crit Sit cases,
sysadmins used scripts to automate monitoring of system health,
to perform operations on a large number of systems, and to try to
eliminate errors on common tasks that take many steps. Other
sysadmins we observed kept a directory of short scripts and
commands called something like “my favorite commands” to
rerun commands that once worked for them. Typically, such
commands and scripts were shared with other sysadmins who
modified them to fit their particular environments.

One difficulty in script writing was error handling. When handled
incorrectly, errors may leave the system in an inconsistent state.
The Lost Semicolon case described a procedure punctuated by
instructions such as, “Check that the tables were created
properly.” It was left up to the sysadmin to know what commands
to use to check the tables. Furthermore, when asked about this, we
were told that that was when sysadmins would “show their stuff”
because errors called for ingenuity and creativity.
Another difficulty with script writing was managing input and
output. Most scripts we observed were command-line tools that
took few if any parameters. Scripts were not flexible; each did one
particular task using several hard-coded constants, as in the Lost
Semicolon case. Output was often nothing but the concatenated
output of each command in the script, which was often so verbose
that errors might not be observed.

Within the groups of sysadmins we observed, there were various
levels of expertise, including some “script writers.” Though most
sysadmins could put together a handful of commands into simple
shell scripts to execute a series of commands at once, script
writing requires understanding basic programming concepts,
which our survey and interview data show is not necessarily a
skill shared by all sysadmins (only 35% reported having a
bachelor’s degree in computer science). Moreover, most software
development tools are meant for programmers and are intended to
support large scale development, not the less formal style of
sysadmins. The sysadmin work environment we saw was very
different from that required for the design-development-test cycle
of software developers. For the sysadmin, rebooting and starting
over was usually not an option.

5.5 Multitasking and Diversions
Because of the nature of their environments, the sysadmins we
observed had a complex interleaved workflow with multiple tasks
conducted in parallel, yet their workflow was often diverted
because of missing information, unfulfilled prerequisites, broken
tools, or required expertise. Multitasking was particularly an issue
for sysadmins as they maintained a large number of long-running
tasks, while trying to be very efficient overall. When tasks were

loosely related, multitasking seemed to work without much
trouble. When tasks were too close, however, problems such as
the offline versus online confusion in the Crontab as User
Interface case occurred.

Multitasking was nicely supported in terminal sessions, which can
run tasks on multiple open sessions simultaneously and support
quick switching among tasks. The history of a terminal session
was of further help for sysadmins, reminding them of the context
of their tasks as they could see previous commands along with
their output. The GUI tools we observed were less supportive of
multitasking since most were not designed for rapidly switching
between different system contexts, and none displayed a history of
past commands. For example, the database management GUI did
not allow multiple simultaneous system views, but required multi-
step navigation to switch between viewed components.

Diversions were a common and expected part of the sysadmin
work. Our analysis of computer sysadmins solving problems
during routine work suggests that much troubleshooting centered
on tools, infrastructures, environments, and other people that were
not directly related to the problems at hand, but that had to be
dealt with nonetheless. That is, while solving specific computer
system problems, administrators often solved problems that arose
outside the scope of the initial problems themselves. For instance,
when trying to fix a misconfigured web server, we observed an
administrator needing access to the server machine, which in turn
required finding the person responsible for controlling access and
convincing that person to grant permission, as also shown in the
Crit Sit case. Though the original problem concerned software
configuration parameters, the solution required dealing with
systems and people that were not in the space of configuration
parameters. And this was not an isolated incident: Observational
data from three troubleshooting episodes showed that about 25%
of time was spent on these sorts of diversions.

6. CONCLUSION
Our studies focused on people and practices to find opportunities
for supporting work through appropriate design and technology.
As illustrated in the cases, our main findings are (1) collaboration
was a primary activity among sysadmins; (2) sysadmins worked
in an environment that was very complex, both technically and
socially; (3) sysadmins spent significant time planning and
rehearsing; (4) sysadmins were at once system users, builders, and
repairers who relied on technical, social, and organizational skills;
(5) sysadmins often found themselves “off the trail”, diverted
from their tasks because of missing information, broken tools, or
needed expertise. Furthermore, the tools available to sysadmins
do not support their work practices in these areas.

How can we design more effective tools for sysadmins? This
question becomes really critical as new paradigms such as
Autonomic Computing are being put forward as solutions to the
manageability of complex software architecture (see [10]). First,
an important task will be to structure our understanding of these
workers and their work in many different settings [1]. Our studies
focused on web and database sysadmins in large corporate
information technology departments, and included analysis of tool
use (see [3]) and collaborative problem solving activities (see
[13]). We are well aware that the situation is different in smaller
businesses where a single sysadmin has to manage many different
kinds of systems. And there are probably many things to learn
about storage administrators, network administrators, operating

system administrators, and hardware administrators who work
with physical rather than virtualized technology.

Second, we must translate our findings into concrete guidelines
that transform real technologies and processes that help
sysadmins. There are two clear dangers here. The first is that
sysadmins already have many more tools than they can manage.
The products they use come with tools. Third parties produce
alternative tools. Home-brew tools add to the mix. In fact, every
new script they write might be considered yet another tool.
Adding lots of little tools will probably not help. We expect that
rethinking the larger structure of sysadmins’ relationship to the
systems they manage in an integrated environment will lead to the
most useful results.

A second danger is falling into the CLI vs. GUI debate. Many
sysadmins are quick to proclaim that CLIs are good and GUIs are
bad. However, this oversimplifies the issues. After all, web
browsers, email, instant messaging, and even terminal emulators
are valued GUI applications. From our studies, we have begun to
develop a list of qualities that good sysadmin interfaces have.
Whether GUI or CLI or both, successful tools will be fast,
truthful, scalable, and scriptable. There is much to be done to
develop interface components that scale to the complexity, risk,
and number of computer systems that sysadmins manage. We
must think carefully about fundamental issues, such as recall vs.
recognition, reversibility and complexity of actions, immediacy of
feedback, and presentation of information.

7. ACKNOWLEDGMENTS
Thanks to Christopher Campbell, Steve Farrell, and Anna Zacchi
for their help in conducting field studies and the sysadmins and
their managers for their time and support. We also thank Jeanette
Blomberg, Beverly Harrison, and Christine Halverson for many
helpful comments on an early draft.

8. REFERENCES
[1] Anderson, E. Researching system administration. Ph.D.

Thesis. University of California, Berkeley, 2002.
[2] Barrett, R., Chen, M., & Maglio, P. P. System Administrators

are Users, Too: Designing
Workspaces for Managing Internet-scale Systems, CHI 2003
Workshop.

[3] Barrett, R., Maglio, P. P., Kandogan, E., Bailey, J., Usable
Autonomic Computing Systems: the Administrators’
Perspective, Proc. ICAC’04 – International Conference on
Autonomic Computing, 2004.

[4] Dijker, B., A Day in the Life of System Administrators,
SAGE, http://sageweb.sage.org

[5] Fitzpatrick, G., Kaplan, S., Mansfield, T. Physical Spaces,
Virtual Places and Social Worlds: A Study of Work in the
Virtual, Proc. CSCW ’96 – Computer Supported Cooperative
Work, 1996, pp. 334-343.

[6] Halprin, G. The Workflow of System Administration, SAGE-
AU ’98, Canberra, Australia, 1998. http://www.sage-
au.org.au/conf/sage-au98/

[7] Halverson, C. A., The Value of Persistence: A Study of the
Creation, Ordering and Use of Conversation Archives by a
Knowledge Worker, Proc. 37th Annual HICSS’04 – Hawaii

International Conference on System Sciences, 2004, pp.
40108.1

[8] Hrebec, D. G., and Stiber, M. A Survey of System
Administrator Mental Models and Situation Awareness,
Proc. ACM SIGCPR – Computer Personnel Research, 2001,
pp. 166-172.

[9] Hutchins E. (1995). Cognition in the Wild. Cambridge, MA:
MIT Press.

[10] IBM, “Autonomic Computing: IBM’s Perspective on the
State of Information Technology”;
http://www.ibm.com/industries/government/doc/content/reso
urce/thought/278606109.html

[11] Kephart, J. O., Chess, D. M. The Vision of Autonomic
Computing, IEEE Computer, January 2003, 41--51.

[12] Luff, P., Hindmarsh, J., Heath, C. (1999). Workplace
Studies: Recovering Work Practice and Information System
Design. Cambridge, MA: Cambridge University Press.

[13] Maglio, P. P., Kandogan, E., & Haber, E. (2003). Distributed
cognition and joint activity in collaborative problem solving.
In Proceedings of the Twenty-fifth Annual Conference of the
Cognitive Science Society. Boston, MA. LEA.

[14] Orr, J. E. (1996). Talking About Machines: An Ethnography
of a Modern Job. Ithaca, NY: Cornell University Press.

[15] Patterson, D. et al. Recovery-Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies,
Technical report CSD-02-1175, Computer Science Dept.,
Univ. of California, Berkeley, 2002.

[16] Rogers, Y. (1992) Ghosts in the network: distributed
troubleshooting in a shared working environment. Proc.
CSCW'92, pp. 346-355.

[17] Sandusky, R. J. Infrastructure Management as Cooperative
Work: Implications for Systems Design, Proc. ACM Group
’97 – Conference on Supporting Group Work, 1997, pp. 91-
100.

[18] Sheridan T.B., Telerobotics, Automation and Human
Supervisory Control, MIT Press, Cambridge, MA, 1992.

[19] Shneiderman, B. Empirical studies of programmers: the
territory, paths, and destination. 1st Workshop on Empirical
Studies of Programmers, 1986, pp. 1-12.

[20] Shneiderman, B. Designing the user interface: Strategies for
effective human-computer interaction, Chapter 8, Addison
Wesley Longman, 1998.

[21] Sproull, L. and S. Kiesler, Connections: New ways of
working in the networked organization. 1991, Cambridge,
MA.: The MIT Press.

[22] Suchman, L. (1987). Plans and Situated Actions: The
Problem of Human-Machine Communication. Cambridge:
Cambridge University Press.

[23] Teasley, S.D., Covi, L., Krishnan, M.S., & Olson, J.S.
(2000). How does radical collocation help a team succeed?
Proc. CSCW’00, pp. 339-346.

